Trong không gian Oxyz, cho hình lăng trụ tam giác \(ABC.{A^\prime }{B^\prime }{C^\prime }\) với \(A(1;2;1),B(7;5;3)\), \(C(4;2;0),{A^\prime }(4;9;9)\). Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng \(AB,{A^\prime }{C^\prime }\) và \(B{B^\prime }\).
Trong không gian Oxyz, cho hình lăng trụ tam giác \(ABC.{A^\prime }{B^\prime }{C^\prime }\) với \(A(1;2;1),B(7;5;3)\), \(C(4;2;0),{A^\prime }(4;9;9)\). Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng \(AB,{A^\prime }{C^\prime }\) và \(B{B^\prime }\).
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {AB} = (6;3;2)\) là một vectơ chỉ phương của đường thẳng AB .
\(\overrightarrow {A{A^\prime }} = (3;7;8)\) là một vectơ chỉ phương của đường thẳng \({\rm{B}}{{\rm{B}}^\prime }\) vì \({\rm{A}}{{\rm{A}}^\prime }//{\rm{B}}{{\rm{B}}^\prime }\).
\(\overrightarrow {AC} = (3;0; - 1)\) là một vectơ chỉ phương của đường thẳng \({{\rm{A}}^\prime }{{\rm{C}}^\prime }\) vi \({\rm{AC}}//{{\rm{A}}^\prime }{{\rm{C}}^\prime }\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
b) Ta có: \(\overrightarrow {MN} = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.