Câu hỏi:

09/08/2025 14 Lưu

Viết phương trình tham số của đường thẳng \(\Delta \), biết \(\Delta \) đi qua điểm \(C(1;2; - 4)\) và vuông góc với mặt phẳng \((P)\) : \(3x - y + 2z - 1 = 0.{\rm{ }}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\vec n = (3; - 1;2)\) là một vectơ pháp tuyến của mặt phẳng (P).

Vi đường thẳng \(\Delta \) vuông góc với mặt phẳng P ( nên đường thẳng \(\Delta \) nhận vectơ \(\vec n\) làm vectơ chỉ phương.

Vậy phương trình tham số của đường thẳng \(\Delta \) là: x=1+3ty=2t  (t là tham số). z=4+2t

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=22ty=5+3tz=7+4t ( t là tham số), x22=y+53=z74.

b) Ta có: \(\overrightarrow {MN}  = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=1+3ty=5tz=4t ( t là tham số), x+13=y5=z41

c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta  \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=3+2ty=25tz=1+6t ( t là tham số), x32=y25=z+16

Lời giải

Đường thẳng AB đi qua \(A(1;2; - 1)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (1;2;1)\). Do đó AB có phương trình chính tắc là \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{1}\) và có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 2 + 2t}\\{z =  - 1 + t}\end{array}} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP