Câu hỏi:

19/08/2025 54 Lưu

Viết phương trình chính tắc của đường thẳng \(b\) trong mỗi trường hợp sau:

a) Đường thẳng \(b\) đi qua điểm \(M(1; - 2; - 3)\) và có vectơ chỉ phương \(\vec a = (5; - 3;2)\).

b) Đường thẳng \(b\) đi qua hai điểm \(A(4;7;1)\) và \(B(6;1;5)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đường thẳng b đi qua điểm \({\rm{M}}(1; - 2; - 3)\) và có vectơ chỉ phương \(\vec a = (5; - 3;2)\) có phương trình chính tắc là \(\frac{{x - 1}}{5} = \frac{{y + 2}}{{ - 3}} = \frac{{z + 3}}{2}\).

b) \(\overrightarrow {AB}  = (2; - 6;4)\).

Đường thẳng b đi qua hai điểm \({\rm{A}}(4;7;1)\) và nhận \(\vec a = \frac{1}{2}\overrightarrow {AB}  = (1; - 3;2)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 4}}{1} = \frac{{y - 7}}{{ - 3}} = \frac{{z - 1}}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).

b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2.0 =  - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)

Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).

Tương tự với \(t =  - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).

Lời giải

a) Một vectơ chỉ phương của đường thẳng AB là \(\overrightarrow {AB}  = (2;3;6)\).

b) Phương trình tham số của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (2;3;6)\) là: x=1+2ty=2+3t (t là tham số). z=3+6t

c) Phương trình chính tắc của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (2;3;6)\) là: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{6}\)