Trong không gian Oxyz, cho đường thằng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y = 3t}\\{z = 1 + t}\end{array}} \right.\)
a) Hãy chỉ ra hai điểm thuộc \(\Delta \) và một vectơ chỉ phương của \(\Delta \).
b) Viết phương trình tham số của đường thẳng đi qua gốc toạ độ \({\rm{O}}(0;0;0)\) và có vectơ chỉ phương \(\vec v = (1;3;1)\).
Trong không gian Oxyz, cho đường thằng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y = 3t}\\{z = 1 + t}\end{array}} \right.\)
a) Hãy chỉ ra hai điểm thuộc \(\Delta \) và một vectơ chỉ phương của \(\Delta \).
b) Viết phương trình tham số của đường thẳng đi qua gốc toạ độ \({\rm{O}}(0;0;0)\) và có vectơ chỉ phương \(\vec v = (1;3;1)\).
Quảng cáo
Trả lời:
a) Ta có \({\rm{A}}(2;0;1),{\rm{B}}(3;3;2)\) là các điếm thuộc \(\Delta \).
Có \(\vec u = (1;3;1)\) là một vectơ chỉ phương của \(\Delta \).
b) Phương trình tham số của đường thắng đi qua gốc tọa độ \(O(0;0;0)\) và có vectơ chí phương \(\vec v = (1;3;1)\) là \(\left\{ {\begin{array}{*{20}{l}}{x = t}\\{y = 3t}\\{z = t}\end{array}} \right.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
b) Ta có: \(\overrightarrow {MN} = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
Lời giải
a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).
b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:
Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:
Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.