Câu hỏi:

19/08/2025 23 Lưu

Trong không gian Oxyz, cho đường thằng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y = 3t}\\{z = 1 + t}\end{array}} \right.\)

a) Hãy chỉ ra hai điểm thuộc \(\Delta \) và một vectơ chỉ phương của \(\Delta \).

b) Viết phương trình tham số của đường thẳng đi qua gốc toạ độ \({\rm{O}}(0;0;0)\) và có vectơ chỉ phương \(\vec v = (1;3;1)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \({\rm{A}}(2;0;1),{\rm{B}}(3;3;2)\) là các điếm thuộc \(\Delta \).

Có \(\vec u = (1;3;1)\) là một vectơ chỉ phương của \(\Delta \).

b) Phương trình tham số của đường thắng đi qua gốc tọa độ \(O(0;0;0)\) và có vectơ chí phương \(\vec v = (1;3;1)\) là \(\left\{ {\begin{array}{*{20}{l}}{x = t}\\{y = 3t}\\{z = t}\end{array}} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì \(M\) thuộc \(\Delta \) nên \(M(2 - 3t;4 + t;5 - 2t)(t \in \mathbb{R})\).

Ta có: \(2 - 3t = 5\), suy ra \(t =  - 1\). Do đó \(4|t = 4|( - 1) = 3,5 - 2t = 5 - 2 \cdot ( - 1) = 7\). Vậy \(M(5;3;7)\).

b) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{8 = 2 - 3t}\\{2 = 4 + t}\\{9 = 5 - 2t}\end{array} \Leftrightarrow t =  - 2} \right.\). Suy ra tồn tại số thực \(t\) thoả mãn hệ phương trình đó. Vậy điểm \(N(8;2;9)\) thuộc đường thẳng \(\Delta \).

c) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ - 1 = 2 - 3t}\\{5 = 4 + t}\\{4 = 5 - 2t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t = 1}\\{t = \frac{1}{2}}\end{array}} \right.} \right.\). Suy ra không tồn tại số thực \(t\) thoả

mãn hệ phương trình đó. Vậy điểm \(P( - 1;5;4)\) không thuộc đường thẳng \(\Delta \).

Do \(\vec u = ( - 3;1; - 2)\) là một vectơ chỉ phương của \(\Delta \) và \(\Delta //{\Delta ^\prime }\) nên \(\vec u = ( - 3;1; - 2)\) cũng là một vectơ chỉ phương của \(\Delta \) '.

Phương trình tham số của đường thẳng \({\Delta ^\prime }\) là: \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 - 3{t^\prime }}\\{y = 5 + {t^\prime }}\\{z = 4 - 2{t^\prime }}\end{array}} \right.\) ( \({t^\prime }\) là tham số).

d) Vì \(I\) thuộc \(\Delta \) nên \(I(2 - 3a;4 + a;5 - 2a)(a \in \mathbb{R})\). Mà \(I\) thuộc \((P)\) nên \((2 - 3a) - (4 + a) + (5 - 2a) + 9 = 0 \Leftrightarrow a = 2\). Vậy \(I( - 4;6;1)\).

Lời giải

a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=22ty=5+3tz=7+4t ( t là tham số), x22=y+53=z74.

b) Ta có: \(\overrightarrow {MN}  = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=1+3ty=5tz=4t ( t là tham số), x+13=y5=z41

c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta  \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=3+2ty=25tz=1+6t ( t là tham số), x32=y25=z+16

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP