Luyện tập 5. Trong không gian Oxyz, viết phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \(M(2; - 1;3)\) và vuông góc với mặt phẳng (Oyz).
Luyện tập 5. Trong không gian Oxyz, viết phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \(M(2; - 1;3)\) và vuông góc với mặt phẳng (Oyz).
Quảng cáo
Trả lời:
Ta có mặt phắng (Oyz) có vectơ pháp tuyến là \(\vec i = (1;0;0)\)
Giá của vectơ \(\vec i\) và \(\Delta \) cùng vuông góc với mặt phắng Oyz nên chúng trùng nhau hoặc song song với nhau.
Do đó \(\Delta \) nhận \(\vec i = (1;0;0)\) làm một vectơ chỉ phương.
Đường thẳng \(\Delta \) đi qua điếm \({\rm{M}}(2; - 1;3)\) và \(\vec i = (1;0;0)\) làm một vectơ chí phương có phương trình là: \(\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y = - 1}\\{z = 3}\end{array}} \right.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).
b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:
Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:
Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).
Lời giải
a) Vì \(M\) thuộc \(\Delta \) nên \(M(2 - 3t;4 + t;5 - 2t)(t \in \mathbb{R})\).
Ta có: \(2 - 3t = 5\), suy ra \(t = - 1\). Do đó \(4|t = 4|( - 1) = 3,5 - 2t = 5 - 2 \cdot ( - 1) = 7\). Vậy \(M(5;3;7)\).
b) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{8 = 2 - 3t}\\{2 = 4 + t}\\{9 = 5 - 2t}\end{array} \Leftrightarrow t = - 2} \right.\). Suy ra tồn tại số thực \(t\) thoả mãn hệ phương trình đó. Vậy điểm \(N(8;2;9)\) thuộc đường thẳng \(\Delta \).
c) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ - 1 = 2 - 3t}\\{5 = 4 + t}\\{4 = 5 - 2t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t = 1}\\{t = \frac{1}{2}}\end{array}} \right.} \right.\). Suy ra không tồn tại số thực \(t\) thoả
mãn hệ phương trình đó. Vậy điểm \(P( - 1;5;4)\) không thuộc đường thẳng \(\Delta \).
Do \(\vec u = ( - 3;1; - 2)\) là một vectơ chỉ phương của \(\Delta \) và \(\Delta //{\Delta ^\prime }\) nên \(\vec u = ( - 3;1; - 2)\) cũng là một vectơ chỉ phương của \(\Delta \) '.
Phương trình tham số của đường thẳng \({\Delta ^\prime }\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 - 3{t^\prime }}\\{y = 5 + {t^\prime }}\\{z = 4 - 2{t^\prime }}\end{array}} \right.\) ( \({t^\prime }\) là tham số).
d) Vì \(I\) thuộc \(\Delta \) nên \(I(2 - 3a;4 + a;5 - 2a)(a \in \mathbb{R})\). Mà \(I\) thuộc \((P)\) nên \((2 - 3a) - (4 + a) + (5 - 2a) + 9 = 0 \Leftrightarrow a = 2\). Vậy \(I( - 4;6;1)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.