Câu hỏi:

09/08/2025 16 Lưu

Trong không gian Oxyz, cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\).

a) Tìm toạ độ một vectơ chỉ phương của \(d\).

b) Trong hai điểm \(A(1; - 5; - 6)\) và \(B(3; - 2;1)\), điểm nào thuộc \(d\) ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2;3;6)\).

b) Một điểm thuộc \(d\) khi toạ độ của điểm đó thoả mãn phương trình chính tắc của \(d\) :

\(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\left( {^*} \right)\)

Thay toạ độ của các điểm A, B vào phương trình chính tắc (*). Ta có:

- Điểm \(A(1; - 5; - 6)\) thoả mãn (*) vì \(\frac{{1 - 3}}{2} = \frac{{ - 5 + 2}}{3} = \frac{{ - 6}}{6}\) nên \(A\) thuộc \(d\);

- Điểm \(B(3; - 2;1)\) không thoả mãn vì \(\frac{{3 - 3}}{2} = \frac{{ - 2 + 2}}{3} \ne \frac{1}{6}\) nên \(B\) không thuộc \(d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=22ty=5+3tz=7+4t ( t là tham số), x22=y+53=z74.

b) Ta có: \(\overrightarrow {MN}  = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=1+3ty=5tz=4t ( t là tham số), x+13=y5=z41

c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta  \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=3+2ty=25tz=1+6t ( t là tham số), x32=y25=z+16

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP