Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A(2; - 5;7)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);
b) \(\Delta \) đi qua hai điểm \(M( - 1;0;4)\) và \(N(2;5;3)\).
c) đi qua điểm \(B(3;2; - 1)\) và vuông góc với mặt phẳng \((P):2x - 5y + 6z - 7 = 0\).
Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A(2; - 5;7)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);
b) \(\Delta \) đi qua hai điểm \(M( - 1;0;4)\) và \(N(2;5;3)\).
c) đi qua điểm \(B(3;2; - 1)\) và vuông góc với mặt phẳng \((P):2x - 5y + 6z - 7 = 0\).
Quảng cáo
Trả lời:
a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
b) Ta có: \(\overrightarrow {MN} = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đường thẳng AB đi qua điếm \({\rm{A}}(2;1;3)\) và có một vectơ chỉ phương \(\overrightarrow {AB} = (0;3;3)\) có phương trình là: \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1 + 3t}\\{z = 3 + 3t}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.