Câu hỏi:

10/08/2025 90 Lưu

Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:

a) \(\Delta \) đi qua điểm \(A(2; - 5;7)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);

b) \(\Delta \) đi qua hai điểm \(M( - 1;0;4)\) và \(N(2;5;3)\).

c)  đi qua điểm \(B(3;2; - 1)\) và vuông góc với mặt phẳng \((P):2x - 5y + 6z - 7 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=22ty=5+3tz=7+4t ( t là tham số), x22=y+53=z74.

b) Ta có: \(\overrightarrow {MN}  = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=1+3ty=5tz=4t ( t là tham số), x+13=y5=z41

c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta  \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=3+2ty=25tz=1+6t ( t là tham số), x32=y25=z+16

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).

b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2.0 =  - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)

Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).

Tương tự với \(t =  - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).

Lời giải

a) Một vectơ chỉ phương của đường thẳng AB là \(\overrightarrow {AB}  = (2;3;6)\).

b) Phương trình tham số của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (2;3;6)\) là: x=1+2ty=2+3t (t là tham số). z=3+6t

c) Phương trình chính tắc của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (2;3;6)\) là: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{6}\)