Câu hỏi:

19/08/2025 24 Lưu

Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ tọa độ Oxyz. Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \((P):2x + 2z + 1 = 0\) và \(\left( {{P^\prime }} \right):x + z + 7 = 0\).

Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ tọa độ Oxyz. Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng (ảnh 1)

a) Tính góc giữa \((P)\) và \(\left( {{P^\prime }} \right)\).

b) Tính góc hợp bời \((P)\) và \(\left( {{P^\prime }} \right)\) với mặt đất \((Q)\) có phương trình \(z = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Mặt phảng \(({\rm{P}})\) có vectơ pháp tuyến là \(\vec n = (2;0;2)\)

Mặt phắng \(\left( {{{\rm{P}}^\prime }} \right)\) có vectơ pháp tuyến là \(\overrightarrow {{n^\prime }}  = (1;0;1)\)

\(\cos \left( {(P),\left( {{P^\prime }} \right)} \right) = \frac{{|2.1 + 0.0 + 2.1|}}{{\sqrt {{2^2} + {2^2}}  \cdot \sqrt {{1^2} + {1^2}} }} = \frac{4}{4} = 1\). Suy ra ((P),(P’)) =0°.

b) Mặt phẳng \((Q)\) có vectơ pháp tuyến là \(\overrightarrow {{n_Q}}  = (0;0;1)\)

\(\cos ((P),(Q)) = \frac{{|2.0 + 0.0 + 2.1|}}{{\sqrt {{2^2} + {2^2}}  \cdot \sqrt {{1^2}} }} = \frac{2}{{2\sqrt 2 }} = \frac{1}{{\sqrt 2 }}{\rm{. }}\) Suy ra ((P), (Q)) =45°.

\(\cos \left( {\left( {{P^\prime }} \right),(Q)} \right) = \frac{{|1.0 + 0.0 + 1.1|}}{{\sqrt {{1^2} + {1^2}}  \cdot \sqrt 1 }} = \frac{1}{{\sqrt 2 }}{\rm{. }}\)Suy ra P',(Q)=45°.

Mặt phắng ( \({{\rm{O}}^\prime }{\rm{BC}}\) ) có phương trình đoạn chắn là: \(\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1 \Leftrightarrow 2{\rm{x}} + 6{\rm{y}} + 3{\rm{z}} = 6\) có vectơ pháp tuyến \(\vec n = (2;6;3)\)

\(\cos \left( {\left( {{O^\prime }BC} \right),(OBC)} \right) = \frac{{|3|}}{{\sqrt 1  \cdot \sqrt {{2^2} + {6^2} + {3^2}} }} = \frac{3}{7}\).  Suy ra O'BC,(OBC)64,62°.

c) Đường thằng \({B^\prime }C\) nhận \(\overrightarrow {{B^\prime }C}  = ( - 3;1; - 2)\) làm vectơ chỉ phương.

Mặt phẳng ( O ' BC ) có vectơ pháp tuyến \(\vec n = (2;6;3)\)

\(\sin \left( {{B^\prime }C,\left( {{O^\prime }BC} \right)} \right) = \frac{{|( - 3) \cdot 2 + 1 \cdot 6 + ( - 2) \cdot 3|}}{{\sqrt {{{( - 3)}^2} + {1^2} + {{( - 2)}^2}}  \cdot \sqrt {{2^2} + {6^2} + {3^2}} }} = \frac{6}{{7\sqrt {14} }}\). Suy ra B'C,O'BC13,24°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).

b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).

Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM}  = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1}  = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM}  = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).

Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).

Do \(\overrightarrow {AM}  = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} =  - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} =  - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)

Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).

Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}}  = \sqrt {656100}  = 810(\;{\rm{m}})\).

d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Do đó, ta có: \(\sin (\Delta ,(Oxy)) = |\cos (\vec u,\vec k)| = \frac{{|\vec u \cdot \vec k|}}{{|\vec u| \cdot |\vec k|}} = \frac{1}{{3 \cdot 1}} = \frac{1}{3}.\) Vậy (Δ,(Oxy))19°

Lời giải

a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}}  = \sqrt {34} (\;{\rm{m}})\);

\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}}  = \sqrt {45}  = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)

b) Ta có: \(\overrightarrow {OA}  = (3; - 4;2),\overrightarrow {OB}  = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)

Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).

Mặt khác, do \(\overrightarrow {CA}  = (3; - 4; - 3),\overrightarrow {BC}  = (5;2;4)\) nên ta có:

- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA}  \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34}  \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),

suy ra (CA,(OAB))50°. Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng 50°.

\({\rm{  -  }}\sin (BC,(OAB)) = |\cos (\overrightarrow {BC} ,\vec n)| = \frac{{|\overrightarrow {BC}  \cdot \vec n|}}{{|\overrightarrow {BC} | \cdot |\vec n|}} = \frac{{|5 \cdot 0 + 2 \cdot 1 + 4 \cdot 2|}}{{3\sqrt 5  \cdot \sqrt 5 }} = \frac{2}{3}{\rm{, }}\)

suy ra (BC,(OAB))42°. Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng 42°.