Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là \(40\;{\rm{cm}},44\;{\rm{cm}},48\;{\rm{cm}}\).
a) Khoảng cách từ điểm \(D\) đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên.)
b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là \(40\;{\rm{cm}},44\;{\rm{cm}},48\;{\rm{cm}}\).

a) Khoảng cách từ điểm \(D\) đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên.)
b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Quảng cáo
Trả lời:


a) Chọn hệ trục tọa độ như hình vẽ.
\(40\;{\rm{cm}} = 0,4\;{\rm{m}},44\;{\rm{cm}} = 0,44\;{\rm{m}},48\;{\rm{cm}} = 0,48\;{\rm{m}}{\rm{. }}\)
Khi đó ta có \({\rm{A}}(0;1;0,4),{\rm{B}}(1;1;0,44),{\rm{C}}(1;0;0,48)\).
Có \(\overrightarrow {AB} = (1;0;0,04)\). Vi ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 - {x_D} = 1}\\{ - {y_D} = 0}\\{0,48 - {z_D} = 0,04}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_D} = 0}\\{{y_D} = 0}\\{{z_D} = 0,44}\end{array}} \right.\)
Suy ra \(D(0;0;0,44)\).
Vậy khoảng cách từ điểm \(D\) đến đáy bể là 44 cm .
b) Ta có đáy bể nằm trong mặt phẳng \({\rm{Oxy}}:z = 0\) có vectơ pháp tuyến \(\vec k = (0;0;1)\)
Ta có \(\quad \overrightarrow {AB} = (1;0;0,04),\quad \overrightarrow {AC} = (1; - 1;0,08)\), \([\overrightarrow {AB} ,\overrightarrow {AC} ] = (0,04; - 0,04; - 1)\)
Mặt phẳng \((ABCD)\) đi qua \({\rm{A}}(0;1;0,4)\) và có vectơ pháp tuyến \(\vec n = [\overrightarrow {AB} ,\overrightarrow {AC} ] = (0,04; - 0,04; - 1)\) có phương trình là: \(0,04x - 0,04(y - 1) - (z - 0,4) = 0 \Leftrightarrow 0,04x - 0,04y - z + 0,44 = 0.{\rm{ }}\)
Do đó góc giữa đáy bể và mặt phẳng nằm ngang chính là góc giữa mặt phẳng (ABCD) và mặt đáy.
\({\rm{ C\'o }}\cos ((ABCD),(Oxy)) = \frac{{| - 1|}}{{\sqrt 1 \cdot \sqrt {{{0,04}^2} + {{( - 0,04)}^2} + {{( - 1)}^2}} }} = \frac{{25}}{{\sqrt {627} }}\). Suy raHot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).
b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).
Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM} = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1} = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM} = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).
Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).
Do \(\overrightarrow {AM} = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} = - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} = - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)
Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).
c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).
Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}} = \sqrt {656100} = 810(\;{\rm{m}})\).
d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Do đó, ta có: \(\sin (\Delta ,(Oxy)) = |\cos (\vec u,\vec k)| = \frac{{|\vec u \cdot \vec k|}}{{|\vec u| \cdot |\vec k|}} = \frac{1}{{3 \cdot 1}} = \frac{1}{3}.\) VậyLời giải
a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}} = \sqrt {34} (\;{\rm{m}})\);
\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}} = \sqrt {45} = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)
b) Ta có: \(\overrightarrow {OA} = (3; - 4;2),\overrightarrow {OB} = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)
Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).
Mặt khác, do \(\overrightarrow {CA} = (3; - 4; - 3),\overrightarrow {BC} = (5;2;4)\) nên ta có:
- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA} \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34} \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),
suy ra . Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng .
\({\rm{ - }}\sin (BC,(OAB)) = |\cos (\overrightarrow {BC} ,\vec n)| = \frac{{|\overrightarrow {BC} \cdot \vec n|}}{{|\overrightarrow {BC} | \cdot |\vec n|}} = \frac{{|5 \cdot 0 + 2 \cdot 1 + 4 \cdot 2|}}{{3\sqrt 5 \cdot \sqrt 5 }} = \frac{2}{3}{\rm{, }}\)
suy ra . Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.