Câu hỏi:

19/08/2025 53 Lưu

Một mái nhà hình tròn được đặt trên ba cây cột trụ (H.5.33). Các cây cột vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt là \(7\;{\rm{m}},6\;{\rm{m}},5\;{\rm{m}}\). Ba chân cột là ba đỉnh của một tam giác đều trên mặt sàn nhà với cạnh dài 4 m . Hỏi mái nhà nghiêng với mặt sàn nhà một góc bao nhiêu độ?

Một mái nhà hình tròn được đặt trên ba cây cột trụ (H.5.33). Các cây cột vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn hệ trục tọa độ như hình vẽ với O là trung điếm của AC .

Ta có: \(A(0; - 2;0),B(2\sqrt 3 ;0;0),C(0;2;0),{A^\prime }(0; - 2;7),{B^\prime }(2\sqrt 3 ;0;6),{C^\prime }(0;2;5)\).

Ta có \(\overrightarrow {AB}  = (2\sqrt 3 ;2;0),\overrightarrow {AC}  = (0;4;0),\overrightarrow {{A^\prime }{B^\prime }}  = (2\sqrt 3 ;2; - 1),\overrightarrow {{A^\prime }{C^\prime }}  = (0;4; - 2)\)

Có \([\overrightarrow {AB} ,\overrightarrow {AC} ] = \left( {\left| {\begin{array}{*{20}{l}}2&0\\4&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{2\sqrt 3 }\\0&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{2\sqrt 3 }&2\\0&4\end{array}} \right|} \right) = (0;0;8\sqrt 3 )\)

\(\left[ {\overrightarrow {{A^\prime }{B^\prime }} ,\overrightarrow {{A^\prime }{C^\prime }} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\4&{ - 2}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&{2\sqrt 3 }\\{ - 2}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{2\sqrt 3 }&2\\0&4\end{array}} \right|} \right) = (0;4\sqrt 3 ;8\sqrt 3 )\)

Mặt phẳng \(({\rm{ABC}})\) có một vectơ pháp tuyến là \(\frac{1}{{8\sqrt 3 }}[\overrightarrow {AB} ,\overrightarrow {AC} ] = (0;0;1)\)

Mặt phắng ( \(\left. {{A^\prime }{B^\prime }{C^\prime }} \right)\) có một vectơ pháp tuyến là \(\frac{1}{{4\sqrt 3 }}\left[ {\overrightarrow {{A^\prime }{B^\prime }} ,\overrightarrow {{A^\prime }{C^\prime }} } \right] = (0;1;2)\)

Do đó cos(ABC),A'B'C'=|2|11+4=25(ABC),A'B'C'26,6°
Suy ra mái nhà nghiêng với mặt sàn nhà một góc khoáng 26,60

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).

b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).

Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM}  = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1}  = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM}  = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).

Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).

Do \(\overrightarrow {AM}  = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} =  - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} =  - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)

Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).

Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}}  = \sqrt {656100}  = 810(\;{\rm{m}})\).

d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Do đó, ta có: \(\sin (\Delta ,(Oxy)) = |\cos (\vec u,\vec k)| = \frac{{|\vec u \cdot \vec k|}}{{|\vec u| \cdot |\vec k|}} = \frac{1}{{3 \cdot 1}} = \frac{1}{3}.\) Vậy (Δ,(Oxy))19°

Lời giải

a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}}  = \sqrt {34} (\;{\rm{m}})\);

\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}}  = \sqrt {45}  = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)

b) Ta có: \(\overrightarrow {OA}  = (3; - 4;2),\overrightarrow {OB}  = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)

Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).

Mặt khác, do \(\overrightarrow {CA}  = (3; - 4; - 3),\overrightarrow {BC}  = (5;2;4)\) nên ta có:

- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA}  \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34}  \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),

suy ra (CA,(OAB))50°. Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng 50°.

\({\rm{  -  }}\sin (BC,(OAB)) = |\cos (\overrightarrow {BC} ,\vec n)| = \frac{{|\overrightarrow {BC}  \cdot \vec n|}}{{|\overrightarrow {BC} | \cdot |\vec n|}} = \frac{{|5 \cdot 0 + 2 \cdot 1 + 4 \cdot 2|}}{{3\sqrt 5  \cdot \sqrt 5 }} = \frac{2}{3}{\rm{, }}\)

suy ra (BC,(OAB))42°. Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng 42°.