Câu hỏi:

19/08/2025 64 Lưu

Kim tự tháp Kheops ở Ai Câpp có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m , các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng \((SAB)\) và (SBC).

Kim tự tháp Kheops ở Ai Câpp có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Kim tự tháp Kheops ở Ai Câpp có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m (ảnh 2)

Gọi O là giao điểm của AC và BD . Suy ra O là trung điếm của \({\rm{AC}},{\rm{BD}}\).

Vì các tam giác SAC, SBD đều cân tại S, SO là trung tuyến nên SO đồng thời là đường cao.

Suy ra \(SO \bot AC\), \(SO \bot BD\) nên \(SO \bot (ABCD)\).

Chọn hệ tọa độ như hình vẽ.

Vi ABCD là hình vuông cạnh 230 m nên \({\rm{OA}} = {\rm{OB}} = {\rm{OC}} = {\rm{OD}} = 115\sqrt 2 \).

Xét tam giác SOB vuông tại \(O\), có \(SO = \sqrt {S{B^2} - O{B^2}}  = \sqrt {{{219}^2} - {{(115\sqrt 2 )}^2}}  = 7\sqrt {439} \)

Ta có \(A( - 115\sqrt 2 ;0;0),B(0; - 115\sqrt 2 ;0),C(115\sqrt 2 ;0;0),S(0;0;7\sqrt {439} )\)

Ta có \(\overrightarrow {SA}  = ( - 115\sqrt 2 ;0; - 7\sqrt {439} ),\overrightarrow {SB}  = (0; - 115\sqrt 2 ; - 7\sqrt {439} )\),

\(\begin{array}{l}\overrightarrow {SC}  = (115\sqrt 2 ;0; - 7\sqrt {439} )\\{\rm{Ta c\'o  }}[\overrightarrow {SA} ,\overrightarrow {SB} ] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 7\sqrt {439} }\\{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&{ - 115\sqrt 2 }\\{ - 7\sqrt {439} }&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&0\\0&{ - 115\sqrt 2 }\end{array}} \right|} \right)\\ = ( - 805\sqrt {878} ; - 805\sqrt {878} ;26450)\end{array}\)

\([\overrightarrow {SB} ,\overrightarrow {SC} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\\0&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&0\\{ - 7\sqrt {439} }&{115\sqrt 2 }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{ - 115\sqrt 2 }\\{115\sqrt 2 }&0\end{array}} \right|} \right) = (805\sqrt {878} ; - 805\sqrt {878} ;26450)\)

Mặt phắng (SAB) nhận \(\vec n = \frac{1}{5}[\overrightarrow {SA} ,\overrightarrow {SB} ] = ( - 161\sqrt {878} ; - 161\sqrt {878} ;5290)\) làm vectơ pháp tuyến.

Mặt phắng (SBC) nhận \(\overrightarrow {{n^\prime }}  = \frac{1}{5}[\overrightarrow {SB} ,\overrightarrow {SC} ] = (161\sqrt {878} ; - 161\sqrt {878} ;5290)\) làm vectơ pháp tuyến.

Do đó

\(\begin{array}{l}\cos ((SAB),(SBC)) = \frac{{\left| { - {{(161\sqrt {878} )}^2} + {{(161\sqrt {878} )}^2} + {{5290}^2}} \right|}}{{\sqrt {{{( - 161\sqrt {878} )}^2} + {{( - 161\sqrt {878} )}^2} + {{5290}^2}}  \cdot \sqrt {{{(161\sqrt {878} )}^2} + {{( - 161\sqrt {878} )}^2} + {{5290}^2}} }}\\ = \frac{{{{5290}^2}}}{{{{(161\sqrt {878} )}^2} + {{( - 161\sqrt {878} )}^2} + {{5290}^2}}} \approx 0,3807\end{array}\)

Suy ra ((SAB),(SBC))67,6°. Vậy góc giữa hai mặt phắng (SAB) và (SBC) khoảng 67,6°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).

b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).

Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM}  = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1}  = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM}  = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).

Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).

Do \(\overrightarrow {AM}  = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} =  - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} =  - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)

Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).

Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}}  = \sqrt {656100}  = 810(\;{\rm{m}})\).

d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Do đó, ta có: \(\sin (\Delta ,(Oxy)) = |\cos (\vec u,\vec k)| = \frac{{|\vec u \cdot \vec k|}}{{|\vec u| \cdot |\vec k|}} = \frac{1}{{3 \cdot 1}} = \frac{1}{3}.\) Vậy (Δ,(Oxy))19°

Lời giải

a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}}  = \sqrt {34} (\;{\rm{m}})\);

\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}}  = \sqrt {45}  = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)

b) Ta có: \(\overrightarrow {OA}  = (3; - 4;2),\overrightarrow {OB}  = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)

Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).

Mặt khác, do \(\overrightarrow {CA}  = (3; - 4; - 3),\overrightarrow {BC}  = (5;2;4)\) nên ta có:

- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA}  \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34}  \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),

suy ra (CA,(OAB))50°. Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng 50°.

\({\rm{  -  }}\sin (BC,(OAB)) = |\cos (\overrightarrow {BC} ,\vec n)| = \frac{{|\overrightarrow {BC}  \cdot \vec n|}}{{|\overrightarrow {BC} | \cdot |\vec n|}} = \frac{{|5 \cdot 0 + 2 \cdot 1 + 4 \cdot 2|}}{{3\sqrt 5  \cdot \sqrt 5 }} = \frac{2}{3}{\rm{, }}\)

suy ra (BC,(OAB))42°. Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng 42°.