Kim tự tháp Kheops ở Ai Câpp có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m , các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng \((SAB)\) và (SBC).
Kim tự tháp Kheops ở Ai Câpp có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m , các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng \((SAB)\) và (SBC).

Quảng cáo
Trả lời:


Gọi O là giao điểm của AC và BD . Suy ra O là trung điếm của \({\rm{AC}},{\rm{BD}}\).
Vì các tam giác SAC, SBD đều cân tại S, SO là trung tuyến nên SO đồng thời là đường cao.
Suy ra \(SO \bot AC\), \(SO \bot BD\) nên \(SO \bot (ABCD)\).
Chọn hệ tọa độ như hình vẽ.
Vi ABCD là hình vuông cạnh 230 m nên \({\rm{OA}} = {\rm{OB}} = {\rm{OC}} = {\rm{OD}} = 115\sqrt 2 \).
Xét tam giác SOB vuông tại \(O\), có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {{{219}^2} - {{(115\sqrt 2 )}^2}} = 7\sqrt {439} \)
Ta có \(A( - 115\sqrt 2 ;0;0),B(0; - 115\sqrt 2 ;0),C(115\sqrt 2 ;0;0),S(0;0;7\sqrt {439} )\)
Ta có \(\overrightarrow {SA} = ( - 115\sqrt 2 ;0; - 7\sqrt {439} ),\overrightarrow {SB} = (0; - 115\sqrt 2 ; - 7\sqrt {439} )\),
\(\begin{array}{l}\overrightarrow {SC} = (115\sqrt 2 ;0; - 7\sqrt {439} )\\{\rm{Ta c\'o }}[\overrightarrow {SA} ,\overrightarrow {SB} ] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 7\sqrt {439} }\\{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&{ - 115\sqrt 2 }\\{ - 7\sqrt {439} }&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&0\\0&{ - 115\sqrt 2 }\end{array}} \right|} \right)\\ = ( - 805\sqrt {878} ; - 805\sqrt {878} ;26450)\end{array}\)
\([\overrightarrow {SB} ,\overrightarrow {SC} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 115\sqrt 2 }&{ - 7\sqrt {439} }\\0&{ - 7\sqrt {439} }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&0\\{ - 7\sqrt {439} }&{115\sqrt 2 }\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{ - 115\sqrt 2 }\\{115\sqrt 2 }&0\end{array}} \right|} \right) = (805\sqrt {878} ; - 805\sqrt {878} ;26450)\)
Mặt phắng (SAB) nhận \(\vec n = \frac{1}{5}[\overrightarrow {SA} ,\overrightarrow {SB} ] = ( - 161\sqrt {878} ; - 161\sqrt {878} ;5290)\) làm vectơ pháp tuyến.
Mặt phắng (SBC) nhận \(\overrightarrow {{n^\prime }} = \frac{1}{5}[\overrightarrow {SB} ,\overrightarrow {SC} ] = (161\sqrt {878} ; - 161\sqrt {878} ;5290)\) làm vectơ pháp tuyến.
Do đó
\(\begin{array}{l}\cos ((SAB),(SBC)) = \frac{{\left| { - {{(161\sqrt {878} )}^2} + {{(161\sqrt {878} )}^2} + {{5290}^2}} \right|}}{{\sqrt {{{( - 161\sqrt {878} )}^2} + {{( - 161\sqrt {878} )}^2} + {{5290}^2}} \cdot \sqrt {{{(161\sqrt {878} )}^2} + {{( - 161\sqrt {878} )}^2} + {{5290}^2}} }}\\ = \frac{{{{5290}^2}}}{{{{(161\sqrt {878} )}^2} + {{( - 161\sqrt {878} )}^2} + {{5290}^2}}} \approx 0,3807\end{array}\)
Suy ra . Vậy góc giữa hai mặt phắng (SAB) và (SBC) khoảngHot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).
b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).
Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM} = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1} = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM} = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).
Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).
Do \(\overrightarrow {AM} = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} = - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} = - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)
Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).
c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).
Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}} = \sqrt {656100} = 810(\;{\rm{m}})\).
d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Do đó, ta có: \(\sin (\Delta ,(Oxy)) = |\cos (\vec u,\vec k)| = \frac{{|\vec u \cdot \vec k|}}{{|\vec u| \cdot |\vec k|}} = \frac{1}{{3 \cdot 1}} = \frac{1}{3}.\) VậyLời giải
a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}} = \sqrt {34} (\;{\rm{m}})\);
\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}} = \sqrt {45} = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)
b) Ta có: \(\overrightarrow {OA} = (3; - 4;2),\overrightarrow {OB} = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)
Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).
Mặt khác, do \(\overrightarrow {CA} = (3; - 4; - 3),\overrightarrow {BC} = (5;2;4)\) nên ta có:
- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA} \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34} \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),
suy ra . Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng .
\({\rm{ - }}\sin (BC,(OAB)) = |\cos (\overrightarrow {BC} ,\vec n)| = \frac{{|\overrightarrow {BC} \cdot \vec n|}}{{|\overrightarrow {BC} | \cdot |\vec n|}} = \frac{{|5 \cdot 0 + 2 \cdot 1 + 4 \cdot 2|}}{{3\sqrt 5 \cdot \sqrt 5 }} = \frac{2}{3}{\rm{, }}\)
suy ra . Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.