Câu hỏi:

11/08/2025 64 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\], cạnh bên \[SA = 2a\] và vuông góc với mặt phẳng đáy. Gọi \[M\] là trung điểm cạnh \[SD.\] Tính tang của góc tạo bởi hai mặt phẳng \[\left( {AMC} \right)\] và \[\left( {SBC} \right)\] bằng

A. \[\frac{{\sqrt 3 }}{2}.\]          
B. \[\frac{{2\sqrt 3 }}{3}.\]   
C. \[\frac{{\sqrt 5 }}{5}.\]    
D. \[\frac{{2\sqrt 5 }}{5}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Sử dụng phương pháp tọa độ trong không gian

Gắn hình chóp vào hệ trục tọa độ Oxyz. \(O \equiv A(0;0;0)\); \(B(1;0;0);D(0;1;0);C(1;1;0);S(0;0;2)\)

Do M là trung điểm của SD nên \(M\left( {0;\frac{1}{2};1} \right)\)

\(\overrightarrow {BC}  = (0;1;0);\overrightarrow {SB}  = (1;0; - 2) \Rightarrow \left[ {\overrightarrow {BC} ;\overrightarrow {SB} } \right] = \left( {2;0;1} \right)\)

\(\overrightarrow {MA}  = \left( {0;\frac{1}{2};1} \right);\overrightarrow {AC}  = (1;1;0) \Rightarrow \left[ {\overrightarrow {MA} ;\overrightarrow {AC} } \right] = \left( { - 1;1; - \frac{1}{2}} \right)\). VTPT của (AMC) là: \(\overrightarrow n  = \left( {2; - 2;1} \right)\)

\[\cos \left( {\left( {SBC} \right);\left( {AMC} \right)} \right) = \frac{{\sqrt 5 }}{3} \Rightarrow \tan \left( {\left( {SBC} \right);\left( {AMC} \right)} \right) = \sqrt {\frac{1}{{{{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}}} - 1}  = \frac{{2\sqrt 5 }}{5}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]

\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]

Lời giải

Chọn D

Cho hình lăng trụ đứng ABC.A'B'C' có AB = AC = a góc BAC = 120 độ, AA'= a. Gọi M, N lần lượt là trung điểm của B'C' và CC' (ảnh 1)

Gọi \[H\] là trung điểm \[BC\], \[BC = a\sqrt 3 \], \[AH = \frac{a}{2}\].

Chọn hệ trục tọa độ \[H\left( {0;0;0} \right)\], \[A\left( {\frac{a}{2};0;0} \right)\], \[B\left( {0;\frac{{a\sqrt 3 }}{2};0} \right)\], \[C\left( {0; - \frac{{a\sqrt 3 }}{2};0} \right)\],

\[M\left( {0;0;a} \right)\], \[N\left( {0; - \frac{{a\sqrt 3 }}{2};\frac{a}{2}} \right)\]. Gọi \[\varphi \] là góc giữa mặt phẳng\(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\).

\(\left( {AMN} \right)\) có một vtpt \[\vec n = \left[ {\overrightarrow {AM} ,\overrightarrow {AN} } \right]\]\[ = \left( {\frac{{\sqrt 3 }}{2};\frac{{ - 1}}{4};\frac{{\sqrt 3 }}{4}} \right)\]

\(\left( {ABC} \right)\) có một vtpt \[\overrightarrow {HM} \]\[ = \left( {0;0;1} \right)\], từ đó \[\cos \varphi  = \frac{{\left| {\vec n.\overrightarrow {HM} } \right|}}{{\left| {\vec n} \right|HM}}\]\[ = \frac{{\frac{{\sqrt 3 }}{4}}}{{1.1}}\]\[ = \frac{{\sqrt 3 }}{4}\].

Câu 4

A. \(\cos \alpha  = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)  

B.\(\cos \alpha \,\, = \,\,\frac{{\overrightarrow {AB} .\overrightarrow {CD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)

C. \[\cos \alpha \,\, = \,\,\frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]} \right|}}.\]                          
D.\(\cos \alpha \,\, = \,\,\frac{{\left| {\left[ {\overrightarrow {AB} .\overrightarrow {CD} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP