Cho hình lăng trụ \[ABC.A'B'C'\] có \[A'.ABC\] là tứ diện đều cạnh \[a\]. Gọi \[M\], \[N\] lần lượt là trung điểm của \[AA'\] và \[BB'\]. Tính tan của góc giữa hai mặt phẳng \[\left( {ABC} \right)\] và \[\left( {CMN} \right)\].
Quảng cáo
Trả lời:
Chọn C

Gọi \[O\] là trung điểm của \[AB\]. Chuẩn hóa và chọn hệ trục tọa độ sao cho \[O\left( {0;0;0} \right)\],
\[A\left( {\frac{1}{2};0;0} \right)\], \[B\left( { - \frac{1}{2};0;0} \right)\], \[C\left( {0;\frac{{\sqrt 3 }}{2};0} \right)\], \[H\left( {0;\frac{{\sqrt 3 }}{6};0} \right)\], \[A'H = \frac{{a\sqrt 6 }}{3}\]\[ \Rightarrow A'\left( {0;\frac{{\sqrt 3 }}{6};\frac{{\sqrt 6 }}{3}} \right)\]
Ta có \[\overrightarrow {AB} = \overrightarrow {A'B'} \]\[ \Rightarrow B'\left( { - 1;\frac{{\sqrt 3 }}{6};\frac{{\sqrt 6 }}{3}} \right)\]. Dễ thấy \[\left( {ABC} \right)\] có vtpt \[\overrightarrow {{n_1}} = \left( {0;0;1} \right)\].
\[M\] là trung điểm \[AA'\]\[ \Rightarrow M\left( {\frac{1}{4};\frac{{\sqrt 3 }}{{12}};\frac{{\sqrt 6 }}{6}} \right)\], \[N\] là trung điểm \[BB'\]\[ \Rightarrow N\left( {\frac{{ - 3}}{4};\frac{{\sqrt 3 }}{{12}};\frac{{\sqrt 6 }}{6}} \right)\]
\[\overrightarrow {MN} = \left( { - 1;0;0} \right)\], \[\overrightarrow {CM} = \left( {\frac{1}{4};\frac{{ - 5\sqrt 3 }}{{12}};\frac{{\sqrt 6 }}{6}} \right)\]
\[ \Rightarrow \] \[\left( {CMN} \right)\] có vtpt \[\overrightarrow {{n_2}} = \left( {0;\frac{{\sqrt 6 }}{6};\frac{{5\sqrt 3 }}{{12}}} \right)\]\[ = \frac{{\sqrt 3 }}{{12}}\left( {0;2\sqrt 2 ;5} \right)\]
\[\cos \varphi = \]\[\frac{5}{{\sqrt {33} }}\]\[ \Rightarrow \tan \varphi = \sqrt {\frac{1}{{{{\cos }^2}\varphi }} - 1} \]\[ = \frac{{2\sqrt 2 }}{5}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \[I\] hình chiếu của \[M\] lên \[\left( {ABCD} \right)\], suy ra \[I\] là trung điểm của \[AO\].
Khi đó \[CI = \frac{3}{4}AC = \frac{{3a\sqrt 2 }}{4}\].
Xét \[\Delta CNI\]có: \[CN = \frac{a}{2}\], \[\widehat {NCI} = {45^o}\].
Áp dụng định lý cosin ta có:
\[NI = \sqrt {C{N^2} + C{I^2} - 2CN.CI.\cos {{45}^o}} = \sqrt {\frac{{{a^2}}}{4} + \frac{{9{a^2}}}{8} - 2.\frac{a}{2}.\frac{{3a\sqrt 2 }}{4}.\frac{{\sqrt 2 }}{2}} = \frac{{a\sqrt {10} }}{4}\].
Xét \[\Delta MIN\] vuông tại \[I\]nên \[MI = \sqrt {M{N^2} - N{I^2}} = \sqrt {\frac{{3{a^2}}}{2} - \frac{{5{a^2}}}{8}} = \frac{{a\sqrt {14} }}{4}\].
Mà \[MI//SO,\,MI = \frac{1}{2}SO \Rightarrow SO = \frac{{a\sqrt {14} }}{2}\].
Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ:
Ta có: \[O\left( {0\,;\,0;\,0} \right)\], \[B\left( {0\,;\,\frac{{\sqrt 2 }}{2};\,0} \right)\], \[D\left( {0\,;\, - \frac{{\sqrt 2 }}{2};\,0} \right)\], \[C\left( {\frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[N\left( {\frac{{\sqrt 2 }}{4}\,;\,\frac{{\sqrt 2 }}{4};\,0} \right)\],
\[A\left( { - \frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[S\left( {0\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\], \[M\left( { - \frac{{\sqrt 2 }}{4}\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\].
Khi đó \[\overrightarrow {MN} = \left( {\frac{{\sqrt 2 }}{2}\,;\,\frac{{\sqrt 2 }}{4}\,;\, - \frac{{\sqrt {14} }}{4}\,} \right)\,\,\], \[\overrightarrow {SB} = \left( {0\,;\,\frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\], \[\overrightarrow {SD} = \left( {0\,;\, - \frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\].
Vectơ pháp tuyến mặt phẳng \[\left( {SBD} \right)\]: \[\overrightarrow n = \overrightarrow {SB} \wedge \overrightarrow {SD} = \left( { - \sqrt 7 \,;\,0\,;\,0} \right)\].
Suy ra \[{\rm{sin}}\left( {MN\,,\,\left( {SBD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| { - \sqrt 7 .\frac{{\sqrt 2 }}{2}} \right|}}{{\sqrt 7 .\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\].
Lời giải
Chọn A
Đường thẳng \(d\)có véc tơ chỉ phương là \(\overrightarrow u = \left( { - 1;2;1} \right)\)
Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow n = \left( {1; - 1;0} \right)\)
Gọi \(\alpha \)là góc giữa Đường thẳng \(d\)và Mặt phẳng \(\left( P \right)\). Khi đó ta có
\(\sin \alpha = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} = \frac{{\left| { - 1.1 + 2.\left( { - 1} \right) + 1.0} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\)
Do đóLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.