Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], tâm \[O\]. Gọi \[M\] và \[N\] lần lượt là trung điểm của \[SA\] và \[BC\]. Biết rằng góc giữa \[MN\] và \[\left( {ABCD} \right)\] bằng \(60^\circ \), côsin của góc giữa đường thẳng \[MN\] và mặt phẳng \[\left( {SBD} \right)\] bằng:
Quảng cáo
Trả lời:

Chọn C

Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ. Đặt \[SO = m\,,\,\,\left( {m > 0} \right)\].
\[A\left( {\frac{{a\sqrt 2 }}{2};0;0} \right);\,S\left( {0;0;m} \right);\,N\left( { - \frac{{a\sqrt 2 }}{4};\,\frac{{a\sqrt 2 }}{4};0} \right)\]\[ \Rightarrow M\left( {\frac{{a\sqrt 2 }}{4};\,0;\,\frac{m}{2}} \right)\].\[ \Rightarrow \overrightarrow {MN} = \left( { - \frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{4}; - \frac{m}{2}} \right)\]. Mặt phẳng \[\left( {ABCD} \right)\] có véc tơ pháp tuyến \[\overrightarrow k = \left( {0;0;1} \right)\].
\[ \Rightarrow \sin \left( {MN,\,\left( {ABCD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow k } \right|}}{{\left| {\overrightarrow {MN} } \right|\left| {\overrightarrow k } \right|}} = \frac{{\frac{m}{2}}}{{\sqrt {\frac{{5{a^2}}}{8} + \frac{{{m^2}}}{4}} }} = \frac{{\sqrt 3 }}{2} \Leftrightarrow {m^2} = \frac{{15{a^2}}}{8} + \frac{{3{m^2}}}{4}\].
\[ \Rightarrow 2{m^2} = 15{a^2} \Rightarrow m = \frac{{a\sqrt {30} }}{2}\]
\[ \Rightarrow \overrightarrow {MN} = \left( { - \frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{4}; - \frac{{a\sqrt {30} }}{4}} \right)\], mặt phẳng \[\left( {SBD} \right)\] có véc tơ pháp tuyến là \[\overrightarrow i = \left( {1;0;0} \right)\].
\[ \Rightarrow \sin \left( {MN,\,\left( {SBD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow i } \right|}}{{\left| {\overrightarrow {MN} } \right|\left| {\overrightarrow i } \right|}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\sqrt {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{8} + \frac{{30{a^2}}}{{16}}} }} = \frac{{\sqrt 5 }}{5} \Rightarrow c{\rm{os}}\left( {MN,\,\left( {SBD} \right)} \right) = \frac{{2\sqrt 5 }}{5}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]
\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]
Lời giải
Chọn A
Áp dụng công thức ở lý thuyết.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.