Câu hỏi:

11/08/2025 9 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Gọi \(G\) là trọng tâm của tam giác \(SAB\) và \(M,\,N\) lần lượt là trung điểm của \(SC,\,SD\)(tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng \(\left( {GMN} \right)\) và \(\left( {ABCD} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng ABCD (ảnh 1)

Chọn hệ trục tọa độ \[Oxyz\] như hình vẽ. Khi đó

\(S\left( {0;\,0;\,\frac{{\sqrt 3 }}{2}} \right)\); \(A\left( {\frac{{ - a}}{2};0;\,0} \right)\); \(B\left( {\frac{a}{2};0;\,0} \right)\);\(C\left( {\frac{a}{2};a;\,0} \right)\); \(D\left( {\frac{{ - a}}{2};a;\,0} \right)\)

suy ra \(G\left( {0;\,0;\,\frac{{a\sqrt 3 }}{6}} \right)\); \(M\left( {\frac{a}{4};\frac{a}{2};\,\frac{{a\sqrt 3 }}{4}} \right)\); \(N\left( { - \frac{a}{4};\frac{a}{2};\,\frac{{a\sqrt 3 }}{4}} \right)\)

Ta có mặt phẳng \(\left( {ABCD} \right)\)có vectơ pháp tuyến là \(\vec k = \left( {0;\,0;\,1} \right)\), mặt phẳng \(\left( {GMN} \right)\)có vectơ pháp tuyến là \(\vec n = \left[ {\overrightarrow {GM} ;\,\overrightarrow {GN} } \right] = \left( {0;\, - \frac{{a\sqrt 3 }}{{24}};\,\frac{a}{4}} \right)\)

Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {GMN} \right)\) và \(\left( {ABCD} \right)\), ta có

\[{\rm{cos}}\alpha  = \frac{{\left| {\vec n.\vec k} \right|}}{{\left| {\vec n} \right|.\left| {\vec k} \right|}}\]\[ = \frac{{\frac{1}{4}}}{{\frac{{\sqrt {39} }}{{24}}}}\]\[ = \frac{{2\sqrt {39} }}{{13}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi M và N lần lượt là trung điểm của hai cạnh SA và BC (ảnh 1)

Gọi \[I\] hình chiếu của \[M\] lên \[\left( {ABCD} \right)\], suy ra \[I\] là trung điểm của \[AO\].

Khi đó \[CI = \frac{3}{4}AC = \frac{{3a\sqrt 2 }}{4}\].

Xét \[\Delta CNI\]có: \[CN = \frac{a}{2}\], \[\widehat {NCI} = {45^o}\].

Áp dụng định lý cosin ta có:

\[NI = \sqrt {C{N^2} + C{I^2} - 2CN.CI.\cos {{45}^o}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{9{a^2}}}{8} - 2.\frac{a}{2}.\frac{{3a\sqrt 2 }}{4}.\frac{{\sqrt 2 }}{2}}  = \frac{{a\sqrt {10} }}{4}\].

Xét \[\Delta MIN\] vuông tại \[I\]nên \[MI = \sqrt {M{N^2} - N{I^2}}  = \sqrt {\frac{{3{a^2}}}{2} - \frac{{5{a^2}}}{8}}  = \frac{{a\sqrt {14} }}{4}\].

Mà \[MI//SO,\,MI = \frac{1}{2}SO \Rightarrow SO = \frac{{a\sqrt {14} }}{2}\].

Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ:

Ta có: \[O\left( {0\,;\,0;\,0} \right)\], \[B\left( {0\,;\,\frac{{\sqrt 2 }}{2};\,0} \right)\], \[D\left( {0\,;\, - \frac{{\sqrt 2 }}{2};\,0} \right)\], \[C\left( {\frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[N\left( {\frac{{\sqrt 2 }}{4}\,;\,\frac{{\sqrt 2 }}{4};\,0} \right)\],

\[A\left( { - \frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[S\left( {0\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\], \[M\left( { - \frac{{\sqrt 2 }}{4}\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\].

Khi đó \[\overrightarrow {MN}  = \left( {\frac{{\sqrt 2 }}{2}\,;\,\frac{{\sqrt 2 }}{4}\,;\, - \frac{{\sqrt {14} }}{4}\,} \right)\,\,\], \[\overrightarrow {SB}  = \left( {0\,;\,\frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\], \[\overrightarrow {SD}  = \left( {0\,;\, - \frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\].

Vectơ pháp tuyến mặt phẳng \[\left( {SBD} \right)\]: \[\overrightarrow n  = \overrightarrow {SB}  \wedge \overrightarrow {SD}  = \left( { - \sqrt 7 \,;\,0\,;\,0} \right)\].

Suy ra \[{\rm{sin}}\left( {MN\,,\,\left( {SBD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| { - \sqrt 7 .\frac{{\sqrt 2 }}{2}} \right|}}{{\sqrt 7 .\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\].

Lời giải

Chọn A

Gọi \(\overrightarrow {{n_\alpha }} \), \(\,\overrightarrow {{n_\beta }} \) lần lượt là vectơ pháp tuyến của mặt phẳng \((\alpha )\) và \((\beta )\).

Ta có \(\overrightarrow {{n_\alpha }} (2;\,\, - \,\,1;\,\,2);\,\,\overrightarrow {{n_\beta }} (1;\,\,2;\,\, - \,2)\).

Áp dụng công thức:

\(cos((\alpha ),\,(\beta ))\,\, = \,\,\left| {cos(\overrightarrow {{n_\alpha }} ,\,\,\overrightarrow {{n_\beta }} )} \right|\,\, = \,\,\frac{{\left| {\overrightarrow {{n_\alpha }} .\,\,\overrightarrow {{n_\beta }} } \right|}}{{\left| {\overrightarrow {{n_\alpha }} } \right|.\,\,\left| {\overrightarrow {{n_\beta }} } \right|}} = \,\,\frac{{\left| {2.1 - 1.2 - 2.2} \right|}}{{\sqrt {{2^2} + \,\,{{( - 1)}^2}\,\, + \,\,{2^2}} .\sqrt {({1^2}\,\, + \,\,{2^2}\,\, + \,\,{{( - 2)}^2}} }}\,\, = \,\,\frac{4}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP