Quảng cáo
Trả lời:
Chọn D
Vì \[\Delta OAB\]cân tại \[{\rm{O}}\] \[\left( {OA = OB = R} \right)\]\[ \Rightarrow \widehat {OBA} = \widehat {OAB} = 30^\circ \]\[ \Rightarrow \widehat {BOA} = 180^\circ - \widehat {OBA} - \widehat {OAB}\]
\[\widehat {BOA} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \] suy ra số đo cung nhỏ bằng: \[\widehat {BOA} = 120^\circ \].
Vì \[\Delta OCD\]cân tại \[O\] \[\left( {OC = OD = R} \right)\]\[ \Rightarrow \widehat {OCD} = \widehat {ODC} = 40^\circ \]\[ \Rightarrow \widehat {COD} = 180^\circ - \widehat {OCD} - \widehat {ODC}\]
\[\widehat {COD} = 180^\circ - 40^\circ - 40^\circ = 100^\circ \] suy ra số đo cung nhỏ bằng: \[\widehat {COD} = 100^\circ \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
\[\Delta OAM\]cân tại \[O\] \[\left( {OA = OM = R} \right)\].
\[OB \bot AM\]tại \[H\] suy ra \[OB\] đồng thời là đường phân giác của \[\widehat {AOM}\];
\[\widehat {AOB} = \widehat {BOM} = 80^\circ \] \[ \Rightarrow \widehat {AOM} = \widehat {AOB} + \widehat {BOM}\] \[ = 80^\circ + 80^\circ = 160^\circ \].
Do đó số đo của cung nhỏ bằng: \[\widehat {AOM} = 160^\circ \].
Lời giải
Chọn D
\[M\] là điểm chính giữa của cung \[AB\] nên .
Do \[MC//AD\] nên
\[ \Rightarrow \widehat {COD} = 90^\circ \] (góc ở tâm chắn cung \[CD\])
\[ \Rightarrow \Delta COD\] vuông cân tại \[O \Rightarrow CD = CO\sqrt 2 = R\sqrt 2 \].
Với bài tập này ta cũng có thể lí luận \[ACMD\] là hình thang cân nên \[CD = AM = R\sqrt 2 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.