Câu hỏi:

18/09/2025 105 Lưu

Cho hai đường tròn \(({O_1})\) và \(({O_2})\)tiếp xúc ngoài tại \(A\)và một đường thẳng \(d\)tiếp xúc với \(({O_1})\); \(({O_2})\)lần lượt tại \(B;\,C.\) Lấy \(M\)là trung điểm của \(BC.\)

Cho hai đường tròn (O_1) và (O_2)tiếp xúc ngoài tại A và một đường thẳng d tiếp xúc với (O_1); (O_2)lần lượt tại B;C. Lấy M là trung điểm của BC (ảnh 1)

Chọn khẳng định sai trong các khẳng định sau:

A. \(AM = \frac{{B{O_1} + C{O_2}}}{2}\)

B. \(AM \bot A{O_1};AM \bot A{O_2}\)

C. \(AM = \frac{1}{2}BC\)

D. \(AM = MC\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Xét \(({O_1})\)có \({O_1}B = {O_1}A\)

\( \Rightarrow \Delta {O_1}AB\) cân tại \({O_1} \Rightarrow \widehat {{O_1}BA} = \widehat {{O_1}AB}\).

Xét \(({O_2})\)có \({O_2}C = {O_2}A\)

\( \Rightarrow \Delta {O_2}CA\) cân tại \({O_2} \Rightarrow \widehat {{O_2}CA} = \widehat {{O_2}AC}\).

Mà \(\widehat {{O_1}} + \widehat {{O_2}} = {360^0} - \widehat C - \widehat B = {180^0}\)

\( \Leftrightarrow {180^0} - \widehat {{O_1}BA} - \widehat {{O_1}AB} + {180^0} - \widehat {{O_2}CA} - \widehat {{O_2}AC} = {180^0}\)

\( \Leftrightarrow 2(\widehat {{O_1}AB} + \widehat {{O_2}AC}) = {180^0}\)

\( \Rightarrow \widehat {{O_1}AB} + \widehat {{O_2}AC} = {90^0} \Rightarrow \widehat {BAC} = {90^0}\)

\( \Rightarrow \Delta ABC\)vuông tại \(A\)

Vì tam giác \(ABC\) vuông tại \(A\) có \(AM\)là trung tuyến nên \(AM = BM = DM = \frac{{BC}}{2}\)

Xét tam giác \(BMA\) cân tại \(M \Rightarrow \widehat {MBA} = \widehat {MAB}\) mà \(\widehat {{O_1}BA} = \widehat {{O_1}AB}\,\,(cmt)\)nên:

\(\widehat {{O_1}BA} + \widehat {MBA} = \widehat {{O_1}AB} + \widehat {MAB} \Rightarrow \widehat {{O_1}AM} = \widehat {{O_1}BM} = {90^0}\)

\( \Rightarrow MA \bot A{O_1}\) tại \(A\) nên \(AM\)là tiếp tuyến của \(({O_1})\)

Tương tự ta cũng có \( \Rightarrow MA \bot A{O_2}\) tại \(A\) nên \(AM\)là tiếp tuyến của \(({O_2})\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Biết rằng hai đường tròn \(\left( {O;4cm} \right)\) và \(\left( {O';1cm} \right)\) tiếp xúc ngoài. Vẽ tiếp tuyến chung ngoài \(BC\) của hai đường tròn, \(B \in \left( O \right)\), \(C \in \le (ảnh 1)

Kẻ \(O'H \bot OB\left( {H \in OB} \right)\).

Ta có \(BC\) là tiếp tuyến chung ngoài của \(\left( O \right)\) và \(\left( {O'} \right)\) \( \Rightarrow OB \bot BC;O'C \bot BC\).

\( \Rightarrow \) Tứ giác \(O'HBC\) là hình chữ nhật.

\[ \Rightarrow BC = HO'\] và \[HB = O'C = 1cm\].

\[ \Rightarrow OH = OB - HB = 4 - 1 = 3\left( {cm} \right)\]

Mà hai đường tròn \(\left( O \right)\) và \(\left( {O'} \right)\) tiếp xúc ngoài nên \(OO' = OA + O'A = 4 + 1 = 5\left( {cm} \right)\)

Xét \(\Delta HOO'\left( {\widehat H = 90^\circ } \right):OO{'^2} = O{H^2} + HO{'^2}\)

\( \Rightarrow HO' = \sqrt {OO{'^2} - O{H^2}} = \sqrt {{5^2} - {3^2}} = 4\left( {cm} \right)\)

Vậy \(R \ge d \Leftrightarrow R \ge 2cm\).

Lời giải

Chọn C

Ta có: \(R - r = 7 - 3 = 4\left( {cm} \right)\)

\[ \Rightarrow OO' = R - r\left( { = 4cm} \right)\]

Vậy hai đường tròn đã cho tiếp xúc trong.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP