Câu hỏi:

18/09/2025 40 Lưu

Cho phương trình \[{x^2} - \left( {2m + 1} \right)x + m = 0\] với \[m\] là tham số. Khẳng định nào sau đây đúng?

A. Phương trình có nghiệm duy nhất với mọi \(m\).

B. Phương trình luôn có nghiệm với mọi \(m\).

C. Phương trình vô nghiệm khi \(m < \frac{1}{2}\).

</>

D. Phương trình có nghiệm kép khi \(m = \frac{1}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Phương trình \[{x^2} - \left( {2m + 1} \right)x + m = 0\] có \[\Delta = {\left[ { - \left( {2m + 1} \right)} \right]^2} - 4.1.m = 4{m^2} + 1 > 0,\forall m\]

\[ \Rightarrow \] Phương trình luôn có hai nghiệm phân biệt với mọi \(m\). Tức là phương trình luôn có nghiệm với mọi \(m\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Phương trình \({x^2} - \left( {2m + 3} \right)x - 2m - 4 = 0\)có \(a - b + c = 1 + \left( {2m + 3} \right) - 2m - 4 = 0\)nên luôn có hai nghiệm \({x_1} = - 1,\,{x_2} = 2m + 4\).

Để \({x_1} \ne {x_2}\)thì \(2m + 4 \ne - 1\) nên \(m \ne \frac{{ - 5}}{2}\).

Ta có \(\left| {{x_1}} \right| + \left| {{x_2}} \right| = 5\)

\(1 + \left| {2m + 4} \right| = 5\)

\(\left| {2m + 4} \right| = 4\)

\(2m + 4 = 4\) hoặc \[2m + 4 = - 4\]

\(m = 0\) hoặc \(m = - 4\).

Cả hai giá trị \(m\) tìm được đều thỏa mãn điều kiện. Vậy \(m = 0\)hoặc \(m = - 4\).

Lời giải

Chọn C

Xét phương trình \[2m{x^2} - 4(m - 1)x + 1 = 0{\rm{ (1)}}\]

- Nếu \(m = 0\), thay vào phương trình \[\left( 1 \right)\] ta có: \[ - 4.( - x) + 1 = 0{\rm{ }} \Leftrightarrow x = - \frac{1}{4}\]. Suy ra \(m = 0\) thỏa mãn.

- Nếu \({\rm{m}} \ne 0\), ta có \[\Delta ' = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - 2m.1 = 4.{\left( {m - 1} \right)^2} - 2m = 4{m^2} - 10m + 4\]

Để phương trình \[\left( 1 \right)\] có nghiệm duy nhất, tức là phương trình \[\left( 1 \right)\] có nghiệm kép thì

\[\Delta ' = 4{m^2} - 10m + 4 = 0\]

\[m = 2\] hoặc \[m = \frac{1}{2}\]

Vì \[m \in \mathbb{Z}\] nên có hai giá trị nguyên của \(m\) thỏa mãn là \[m = 0;{\rm{ }}m = 2\]

Câu 3

A. \[{x^2}\, - \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].

B. \[{x^2}\, + \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].

C. \[2{x^2}\, - \,3x\, - \,1\, = \,0\].

D. \[2{x^2}\, + \,3x\, - \,1\, = \,0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP