Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \[2m{x^2} - 4(m - 1)x + 1 = 0\] có nghiệm duy nhất?
Quảng cáo
Trả lời:
Chọn C
Xét phương trình \[2m{x^2} - 4(m - 1)x + 1 = 0{\rm{ (1)}}\]
- Nếu \(m = 0\), thay vào phương trình \[\left( 1 \right)\] ta có: \[ - 4.( - x) + 1 = 0{\rm{ }} \Leftrightarrow x = - \frac{1}{4}\]. Suy ra \(m = 0\) thỏa mãn.
- Nếu \({\rm{m}} \ne 0\), ta có \[\Delta ' = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - 2m.1 = 4.{\left( {m - 1} \right)^2} - 2m = 4{m^2} - 10m + 4\]
Để phương trình \[\left( 1 \right)\] có nghiệm duy nhất, tức là phương trình \[\left( 1 \right)\] có nghiệm kép thì
\[\Delta ' = 4{m^2} - 10m + 4 = 0\]
\[m = 2\] hoặc \[m = \frac{1}{2}\]
Vì \[m \in \mathbb{Z}\] nên có hai giá trị nguyên của \(m\) thỏa mãn là \[m = 0;{\rm{ }}m = 2\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Phương trình \( - {x^2} + 2x + 1 = 0\) có \( = 2 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:
\({x_1}^{} + {x_2} = 2\) và \({x_1}{x_2} = - 1\)
Do vậy \(Q = {x_1}^3 + {x_2}^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {2^3} - 3\left( { - 1} \right).2 = 14\).
Lời giải
Chọn B
Phương trình \({x^2} - x - 2 = 0\) có \( = 5 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:
\({x_1}^{} + {x_2} = 1\) và \({x_1}{x_2} = - 2\).
Khoảng cách giữa hai điểm biểu diễn hai nghiệm của phương trình trên trục số bằng
\(\left| {{x_1} - {x_2}} \right| = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}} = \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} = \sqrt {{1^2} - 4.( - 2)} = 3\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.