Gọi \[{x_1}\], \[{x_2}\], \[{x_3}\] là nghiệm của phương trình \(2{x^3} + 3{x^2} - 1 = 0\). Giá trị của biểu thức \(P = {x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1}\) là
A. \( - 1\).
B. \(2\).
C. \(0\).
D. \( - 2\).
Quảng cáo
Trả lời:
Chọn C
Ta có: \(2{x^3} + 3{x^2} - 1 = 0 \Leftrightarrow 2{x^3} + 2{x^2} + {x^2} - 1 = 0 \Leftrightarrow 2{x^2}(x + 1) + \left( {x + 1} \right)\left( {x - 1} \right) = 0\) \( \Leftrightarrow (x + 1)\left( {2{x^2} + x - 1} \right) = 0 \Leftrightarrow (x + 1)\left( {2{x^2} + 2x - x - 1} \right) = 0 \Leftrightarrow (x + 1)\left( {2x - 1} \right)\left( {x + 1} \right) = 0\)
\( \Rightarrow \left[ \begin{array}{l}{x_1} = - 1\\{x_2} = \frac{1}{2}\\{x_3} = - 1\end{array} \right. \Rightarrow P = - 1.\frac{1}{2} + \frac{1}{2}.( - 1) + - 1( - 1) = 0\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(0\).
B. \(1\).
C. \(2\).
D. \(3\).
Lời giải
Chọn C
Xét phương trình \[2m{x^2} - 4(m - 1)x + 1 = 0{\rm{ (1)}}\]
- Nếu \(m = 0\), thay vào phương trình \[\left( 1 \right)\] ta có: \[ - 4.( - x) + 1 = 0{\rm{ }} \Leftrightarrow x = - \frac{1}{4}\]. Suy ra \(m = 0\) thỏa mãn.
- Nếu \({\rm{m}} \ne 0\), ta có \[\Delta ' = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - 2m.1 = 4.{\left( {m - 1} \right)^2} - 2m = 4{m^2} - 10m + 4\]
Để phương trình \[\left( 1 \right)\] có nghiệm duy nhất, tức là phương trình \[\left( 1 \right)\] có nghiệm kép thì
\[\Delta ' = 4{m^2} - 10m + 4 = 0\]
\[m = 2\] hoặc \[m = \frac{1}{2}\]
Vì \[m \in \mathbb{Z}\] nên có hai giá trị nguyên của \(m\) thỏa mãn là \[m = 0;{\rm{ }}m = 2\]
Câu 2
A. \(1\).
B. \(\frac{1}{4}\).
C. \(7\).
D. \(\frac{7}{4}\).
Lời giải
Chọn C
Phương trình \({x^2} - 2x - 1 = 0\) có \( = 2 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:
\({x_1}^{} + {x_2} = 2\) và \({x_1}{x_2} = - 1\)
\(N = {x_1}^2 + {x_2}^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)
Suy ra \(N = {2^2} - 3\left( { - 1} \right) = 7\).
Câu 3
A. \(m = 3\).
B. \(m = - 3\).
C. \(m = 3\) hoặc \(m = - 3\).
D. \(m = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{x^2}\, - \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].
B. \[{x^2}\, + \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].
C. \[2{x^2}\, - \,3x\, - \,1\, = \,0\].
D. \[2{x^2}\, + \,3x\, - \,1\, = \,0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(m = 0\).
B. \(m = - 4\).
C. \(m = 0\) hoặc \(m = - 4\).
D. \(m = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(2020\).
B. \(\sqrt {2020} \).
C. \(\sqrt {1010} \).
D. \(1010\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(m = - 1\).
B. \(m = 1\).
C. \(m = \pm 1\).
D. Không có \(m\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.