Câu hỏi:

13/08/2025 7 Lưu

Có bao nhiêu giá trị của tham số \(m\) để đường thẳng \[d:y = 5x - m - 4\] và parabol \[(P):y = {x^2}\]cắt nhau tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\) thỏa mãn \[\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 5\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Phương trình hoành độ giao điểm \[{x^2} = 5x - m - 4\] hay \[{x^2} - 5x + m + 4 = 0\] có \[\Delta = 9 - 4m\]

Để đường thẳng \[d\] cắt \((P)\) tại hai điểm phân biệt có hoành độ \[{x_1};{x_2}\] thì \[\Delta > 0\] hay \[9 - 4m > 0\] nên \[m < \frac{9}{4}\]

Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = m + 4\end{array} \right.({x_1};{x_2} \ne 0 \Rightarrow m \ne - 4)\]

Ta có \[\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 5\]

\[\frac{{{x_1}^2 + x_2^2}}{{{x_1}{x_2}}} = 5\]

\[{\left( {{x_1} + {x_2}} \right)^2} - 7{x_1}{x_2} = 0\]

\[25 - 7m - 28 = 0\]

\[m = - \frac{3}{7}(TM)\]

Vậy \[m = - \frac{3}{7}\] là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Thay tọa độ điểm \[A( - 2;4)\] vào hàm số \[y = f(x) = ( - 2m + 1){x^2}\] ta được

\[( - 2m + 1).{( - 2)^2} = 4\] hay \[ - 2m + 1 = 1\] nên \[m = 0\]

Vậy \[m = 0\] là giá trị cần tìm.

Lời giải

Chọn C

Thay tọa độ điểm \[B( - 3;5)\] vào hàm số \[y = f(x) = \frac{{2m - 3}}{3}{x^2}\] ta được

\[\frac{{2m - 3}}{3}.{( - 3)^2} = 5\] hay \[3(2m - 3) = 5\] nên \[6m - 9 = 5\] suy ra \[m = \frac{7}{3}\]. Vậy \[m = \frac{7}{3}\] là giá trị cần tìm.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP