Câu hỏi:

19/08/2025 46 Lưu

Trong không gian Oxyz, cho hình lăng trụ đứng \(OBC.{O^\prime }{B^\prime }{C^\prime }\) có đáy là tam giác OBC vuông tại \(O\). Cho biết \(B(3;0;0),C(0;1;0),{O^\prime }(0;0;2)\). Tính góc giữa:

a) hai đường thẳng \(B{O^\prime }\) và \({B^\prime }C\);

b) hai mặt phẳng \(\left( {{O^\prime }BC} \right)\) và \((OBC)\);

c) đường thẳng \({B^\prime }C\) và mặt phẳng \(\left( {{O^\prime }BC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa: (ảnh 1)

Chọn hệ trục như hình vẽ

\(O(0;0;0),B(3;0;0),C(0;1;0),{O^\prime }(0;0;2),{B^\prime }(3;0;2),{C^\prime }(0;1;2){\rm{. }}\)

a) Đường thằng \({\rm{B}}{{\rm{O}}^\prime }\) nhận \(\overrightarrow {{\rm{B}}{{\rm{O}}^\prime }}  = ( - 3;0;2)\) làm vectơ chí phương.

Đường thẳng \({{\rm{B}}^\prime }{\rm{C}}\) nhận \(\overrightarrow {{B^\prime }C}  = ( - 3;1; - 2)\) làm vectơ chỉ phương.

cosBO',B'C=|(3)(3)+0.1+2(2)|(3)2+22(3)2+12+(2)2=5182

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(\overrightarrow {SA}  = \left( {\frac{a}{2};0; - \frac{{a\sqrt 3 }}{2}} \right),\overrightarrow {CD}  = (a;0;0)\).

Các vectơ \(\overrightarrow {SA} ,\overrightarrow {CD} \) lần lượt là vectơ chí phương của hai đường thắng SA và CD nên cos(SA,CD)=a2a+00+a320a22+02+a322a2+02+02=a22aa=12( do a>0).

Suy ra (SA,CD)=60°

b) Ta có AC=(a;a;0) .

Xét vecto [SA,AC]=0a32a0;a32a20a;a20aa =a232;a232;a22

Khi đó, \(\vec n\) là một vectơ pháp tuyến của mặt phẳng (SAC).

Đường thẳng SD có vectơ chỉ phương là \(\overrightarrow {SD}  = \left( {\frac{a}{2};a; - \frac{{a\sqrt 3 }}{2}} \right)\).

 Ta có sin(SD,(SAC))=a2a232+aa232+a32a22a22+a2+a322a2322+a2322+a222

=a332a2a272=4214. Suy ra (SD,(SAC))28°

Lời giải

Trong không gian Oxyz, ta có \(C(2;3;0),\overrightarrow {SC}  = (2;3; - 2)\); \(\overline {BD}  = ( - 2;3;0)\).

a) Hai đường thằng SC và BD có vectơ chi phương lần lượt là \(\vec u = (2;3; - 2),\vec v = ( - 2;3;0)\).

Ta có \(\cos (SC,BD) = \frac{{|\vec u \cdot \vec v|}}{{|\vec u| \cdot |\vec v|}} = \frac{{|2 \cdot ( - 2) + 3 \cdot 3 + ( - 2) \cdot 0|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}}  \cdot \sqrt {{{( - 2)}^2} + {3^2} + {0^2}} }} = \frac{5}{{\sqrt {221} }}\).

Suy ra (SC,BD)70°21'

b) Ta có phương trình mặt phẳng \((SBD)\) theo đoạn chắn là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{2} = 1\) hay \(3x + 2y + 3z - 6 = 0\).

Mặt phẳng \((SBD)\) có vectơ pháp tuyến \(\vec n = (3;2;3)\), mặt đáy \((ABCD)\) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Gọi \(\alpha \) là góc giũua mặt phẳng \((SBD)\) và mặt đáy.

Ta có \(\cos \alpha  = \frac{{|\vec n \cdot \vec k|}}{{|\vec n| \cdot |\vec k|}} = \frac{{|3 \cdot 0 + 2 \cdot 0 + 3 \cdot 1|}}{{\sqrt {{3^2} + {2^2} + {3^2}}  \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{3}{{\sqrt {22} }}\). Suy ra ((SBD),(ABCD))50°14'

c) Gọi \(\beta \) là góc giũa đường thẳng SC và mặt phẳng \((SBD)\).

Ta có \(\sin \beta  = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}} = \frac{{|2 \cdot 3 + 3 \cdot 2 + ( - 2) \cdot 3|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}}  \cdot \sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{6}{{\sqrt {374} }}\). Suy ra (SC,(SBD))18°4'