Trong không gian, cho hình lập phương \(ABCD.{A^\prime }{B^\prime }{C^\prime }{D^\prime }\).
a) Tính góc giữa hai mặt phẳng \((ABCD)\) và (CDA' \({B^\prime }\) ).
b) Tính góc giữa hai mặt phẳng \(\left( {BC{C^\prime }{B^\prime }} \right)\) và (CDA ' \(\left. {{B^\prime }} \right)\).
Trong không gian, cho hình lập phương \(ABCD.{A^\prime }{B^\prime }{C^\prime }{D^\prime }\).
a) Tính góc giữa hai mặt phẳng \((ABCD)\) và (CDA' \({B^\prime }\) ).
b) Tính góc giữa hai mặt phẳng \(\left( {BC{C^\prime }{B^\prime }} \right)\) và (CDA ' \(\left. {{B^\prime }} \right)\).
Quảng cáo
Trả lời:


a) Trong hình vuông \(AD{D^\prime }{A^\prime }\), ta có: \(A{D^\prime } \bot D{A^\prime }\).
Do \(CD \bot \left( {AD{D^\prime }{A^\prime }} \right)\) nên \(A{D^\prime } \bot CD\). Suy ra \(A{D^\prime } \bot \left( {CD{A^\prime }{B^\prime }} \right)\).
Mặt khác, ta có: \(A{A^\prime } \bot (ABCD)\), suy ra góc giữa hai mặt phẳng \((ABCD)\) và \(\left( {CD{A^\prime }{B^\prime }} \right)\) là góc giữa hai đường thẳng \(A{A^\prime }\) và \(A{D^\prime }\), đó là góc \({A^\prime }A{D^\prime }\). Vì tam giác \({A^\prime }A{D^\prime }\) vuông cân tại \({A^\prime }\) nên . Vậy .
b) Ta có \({\rm{A}}{{\rm{D}}^\prime } \bot ({\rm{CDAB}})\).
Mặt khác, ta có \(AB \bot (BCCB)\), suy ra góc giữa hai mặt phẳng \((BCCB)\) và \((CDAB\) ) là góc giữa hai đường thẳng AB và AD ', đó là góc BAD :
Lại có \(AB \bot \left( {AD{D^\prime }A} \right.\) ), suy ra \(AB \bot AD\) ', do đó .
Vậy
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \(\overrightarrow {SA} = \left( {\frac{a}{2};0; - \frac{{a\sqrt 3 }}{2}} \right),\overrightarrow {CD} = (a;0;0)\).
Các vectơ \(\overrightarrow {SA} ,\overrightarrow {CD} \) lần lượt là vectơ chí phương của hai đường thắng SA và CD nên
b) Ta có .
Xét vectoKhi đó, \(\vec n\) là một vectơ pháp tuyến của mặt phẳng (SAC).
Đường thẳng SD có vectơ chỉ phương là \(\overrightarrow {SD} = \left( {\frac{a}{2};a; - \frac{{a\sqrt 3 }}{2}} \right)\).
Suy ra
Lời giải
Trong không gian Oxyz, ta có \(C(2;3;0),\overrightarrow {SC} = (2;3; - 2)\); \(\overline {BD} = ( - 2;3;0)\).
a) Hai đường thằng SC và BD có vectơ chi phương lần lượt là \(\vec u = (2;3; - 2),\vec v = ( - 2;3;0)\).
Ta có \(\cos (SC,BD) = \frac{{|\vec u \cdot \vec v|}}{{|\vec u| \cdot |\vec v|}} = \frac{{|2 \cdot ( - 2) + 3 \cdot 3 + ( - 2) \cdot 0|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}} \cdot \sqrt {{{( - 2)}^2} + {3^2} + {0^2}} }} = \frac{5}{{\sqrt {221} }}\).
Suy rab) Ta có phương trình mặt phẳng \((SBD)\) theo đoạn chắn là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{2} = 1\) hay \(3x + 2y + 3z - 6 = 0\).
Mặt phẳng \((SBD)\) có vectơ pháp tuyến \(\vec n = (3;2;3)\), mặt đáy \((ABCD)\) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Gọi \(\alpha \) là góc giũua mặt phẳng \((SBD)\) và mặt đáy.
Ta có \(\cos \alpha = \frac{{|\vec n \cdot \vec k|}}{{|\vec n| \cdot |\vec k|}} = \frac{{|3 \cdot 0 + 2 \cdot 0 + 3 \cdot 1|}}{{\sqrt {{3^2} + {2^2} + {3^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{3}{{\sqrt {22} }}\). Suy rac) Gọi \(\beta \) là góc giũa đường thẳng SC và mặt phẳng \((SBD)\).
Ta có \(\sin \beta = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}} = \frac{{|2 \cdot 3 + 3 \cdot 2 + ( - 2) \cdot 3|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}} \cdot \sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{6}{{\sqrt {374} }}\). Suy raLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.