Câu hỏi:

19/08/2025 82 Lưu

Trong không gian vởi hệ tộ độ Oxyz, cho hình chóp S.ABCD có các đỉnh lần lượt là \(S\left( {0;0;\frac{{a\sqrt 3 }}{2}} \right),A\left( {\frac{a}{2};0;0} \right),B\left( { - \frac{a}{2};0;0} \right),C\left( { - \frac{a}{2};a;0} \right),D\left( {\frac{a}{2};a;0} \right)\) với \(a > 0(\) Hình 36).

Trong không gian vởi hệ tộ độ Oxyz, cho hình chóp S.ABCD có các đỉnh lần lượt là S(0; 0; a√3/2), A(a/2; 0; 0), B(-a/2; 0; 0), C(-a/2; a; 0), D(a/2; a; 0) (ảnh 1)

a) Xác định toạ độ của các vectơ \(\overrightarrow {SA} \), \(\overrightarrow {CD} \). Từ đó tính góc giữa hai đường thẳng SA và CD (làm tròn kết quả đến hàng đơn vị của độ).

b) Chỉ ra một vectơ pháp tuyến của mặt phẳng \((SAC)\). Từ đó tính góc giữa đường thẳng SD và mặt phẳng \((SAC)\) (làm tròn kết quả đến hàng đơn vị của độ).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có: \(\overrightarrow {SA}  = \left( {\frac{a}{2};0; - \frac{{a\sqrt 3 }}{2}} \right),\overrightarrow {CD}  = (a;0;0)\).

Các vectơ \(\overrightarrow {SA} ,\overrightarrow {CD} \) lần lượt là vectơ chí phương của hai đường thắng SA và CD nên cos(SA,CD)=a2a+00+a320a22+02+a322a2+02+02=a22aa=12( do a>0).

Suy ra (SA,CD)=60°

b) Ta có AC=(a;a;0) .

Xét vecto [SA,AC]=0a32a0;a32a20a;a20aa =a232;a232;a22

Khi đó, \(\vec n\) là một vectơ pháp tuyến của mặt phẳng (SAC).

Đường thẳng SD có vectơ chỉ phương là \(\overrightarrow {SD}  = \left( {\frac{a}{2};a; - \frac{{a\sqrt 3 }}{2}} \right)\).

 Ta có sin(SD,(SAC))=a2a232+aa232+a32a22a22+a2+a322a2322+a2322+a222

=a332a2a272=4214. Suy ra (SD,(SAC))28°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian Oxyz, ta có \(C(2;3;0),\overrightarrow {SC}  = (2;3; - 2)\); \(\overline {BD}  = ( - 2;3;0)\).

a) Hai đường thằng SC và BD có vectơ chi phương lần lượt là \(\vec u = (2;3; - 2),\vec v = ( - 2;3;0)\).

Ta có \(\cos (SC,BD) = \frac{{|\vec u \cdot \vec v|}}{{|\vec u| \cdot |\vec v|}} = \frac{{|2 \cdot ( - 2) + 3 \cdot 3 + ( - 2) \cdot 0|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}}  \cdot \sqrt {{{( - 2)}^2} + {3^2} + {0^2}} }} = \frac{5}{{\sqrt {221} }}\).

Suy ra (SC,BD)70°21'

b) Ta có phương trình mặt phẳng \((SBD)\) theo đoạn chắn là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{2} = 1\) hay \(3x + 2y + 3z - 6 = 0\).

Mặt phẳng \((SBD)\) có vectơ pháp tuyến \(\vec n = (3;2;3)\), mặt đáy \((ABCD)\) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Gọi \(\alpha \) là góc giũua mặt phẳng \((SBD)\) và mặt đáy.

Ta có \(\cos \alpha  = \frac{{|\vec n \cdot \vec k|}}{{|\vec n| \cdot |\vec k|}} = \frac{{|3 \cdot 0 + 2 \cdot 0 + 3 \cdot 1|}}{{\sqrt {{3^2} + {2^2} + {3^2}}  \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{3}{{\sqrt {22} }}\). Suy ra ((SBD),(ABCD))50°14'

c) Gọi \(\beta \) là góc giũa đường thẳng SC và mặt phẳng \((SBD)\).

Ta có \(\sin \beta  = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}} = \frac{{|2 \cdot 3 + 3 \cdot 2 + ( - 2) \cdot 3|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}}  \cdot \sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{6}{{\sqrt {374} }}\). Suy ra (SC,(SBD))18°4'

Lời giải

Trong không gian với hệ tọa độ Oxyz, cho hình lăng trụ đứng OBC.O'B'C' với O(0; 0; 0), B(2a; 0; 0), C(0; a; 0), O'(0; 0; 3a), a > 0 (ảnh 1)

a) Ta có: \(\overrightarrow {B{B^\prime }}  = \overrightarrow {O{O^\prime }}  = (0;0;3a)\). Suy ra \({x_{{B^\prime }}} = {x_B} = 2a\), \({y_{{B^\prime }}} = {y_B} = 0,{z_{{B^\prime }}} - 0 = 3a\), tức là \({B^\prime }(2a;0;3a)\).

b) Vì \(B(2a;0;0),C(0;a;0),{O^\prime }(0;0;3a)\) nên mặt phẳng \(\left( {{O^\prime }BC} \right)\) có phương trình là

\(\frac{x}{{2a}} + \frac{y}{a} + \frac{z}{{3a}} = 1 \Leftrightarrow 3x + 6y + 2z - 6a = 0.\)

c) Mặt phẳng \(\left( {{O^\prime }BC} \right)\) có một vectơ pháp tuyến là \(\vec n = (3;6;2)\).

Do \({B^\prime }(2a;0;3a),C(0;a;0)\) nên \(\overrightarrow {{B^\prime }C}  = ( - 2a;a; - 3a)\), suy ra vectơ \(\overrightarrow {{B^\prime }C}  = ( - 2a;a; - 3a)\) cùng phương với vectơ \(\vec u = ( - 2;1; - 3)\). Vì thế vectơ \(\vec u = ( - 2;1; - 3)\) là một vectơ chỉ phương của đường thẳng \({B^\prime }C\). Suy ra sin của góc giữa đường thẳng \({B^\prime }C\) và mặt phẳng \(\left( {{O^\prime }BC} \right)\) bằng:

\(\frac{{|3 \cdot ( - 2) + 6 \cdot 1 + 2 \cdot ( - 3)|}}{{\sqrt {{3^2} + {6^2} + {2^2}}  \cdot \sqrt {{{( - 2)}^2} + {1^2} + {{( - 3)}^2}} }} = \frac{6}{{7\sqrt {14} }} = \frac{{3\sqrt {14} }}{{49}}{\rm{. }}\)