Trong không gian Oxyz, cho \(A(0;0;4),B(0; - 3;0),C(0;3;0),D(3;0;0)\). Tính góc giữa hai mặt phẳng \((ABD)\) và \((ACD)\).
Trong không gian Oxyz, cho \(A(0;0;4),B(0; - 3;0),C(0;3;0),D(3;0;0)\). Tính góc giữa hai mặt phẳng \((ABD)\) và \((ACD)\).
Quảng cáo
Trả lời:

Mặt phẳng \((ABD)\) có cặp vectơ chỉ phương là \(\overrightarrow {BD} = (3;3;0)\) và \(\overrightarrow {AD} = (3;0; - 4)\).
Suy ra \((ABD)\) có vectơ pháp tuyến \([B\vec D,\overrightarrow {AD} ] = ( - 12;12; - 9)\). Do đó \(\vec n = ( - 4;4; - 3)\) cũng là vectơ pháp tuyến của \((ABD)\).
Mặt phẳng \((ACD)\) có cặp vectơ chỉ phương là \(\overrightarrow {AC} = (0;3; - 4)\) và \(\overrightarrow {AD} = (3;0; - 4)\). Suy ra \((ACD)\) có vectơ pháp tuyến là \([\overrightarrow {AC} ,\overrightarrow {AD} ] = ( - 12; - 12; - 9)\). Do đó \(\vec m = (4;4;3)\) cũng là vectơ pháp tuyến của \((ACD)\).
Gọi \(\varphi \) là góc giữa hai mặt phẳng \((ABD)\) và \((ACD)\). Khi đó:
\(\cos \varphi = |\cos (\vec n,\vec m)| = \frac{{| - 4 \cdot 4 + 4 \cdot 4 + ( - 3) \cdot 3|}}{{\sqrt {{{( - 4)}^2} + {4^2} + {{( - 3)}^2}} \cdot \sqrt {{4^2} + {4^2} + {3^2}} }} = \frac{9}{{41}}.\)VậyHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mặt phẳng \((\alpha )\) và \((\beta )\) lần lượt có các vectơ pháp tuyến là \(\vec n = (2;2; - 4)\) và \(\overrightarrow {{n^\prime }} = (1;0; - 1)\).
Ta có: \(\cos ((\alpha ),(\beta )) = \frac{{\left| {\vec n \cdot \overrightarrow {{n^\prime }} } \right|}}{{|\vec n| \cdot \left| {\overrightarrow {{n^\prime }} } \right|}} = \frac{{|2 \cdot 1 + 2 \cdot 0 + ( - 4) \cdot ( - 1)|}}{{\sqrt {{2^2} + {2^2} + {{( - 4)}^2}} \cdot \sqrt {{1^2} + {0^2} + {{( - 1)}^2}} }} = \frac{{\sqrt {} 3}}{2}{\rm{. }}\) VậyLời giải
a) \(d\) và \({d^\prime }\) có vectơ chi phương lần lượt là \(\vec a = (1;2;1)\) và \({\vec a^\prime } = (1;1;2)\).
Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|1.1 + 2.1 + 1.2|}}{{\sqrt {{1^2} + {2^2} + {1^2}} \cdot \sqrt {{1^2} + {1^2} + {2^2}} }} = \frac{5}{6}\). Suy ra .
b) \(d\) và \({d^\prime }\) có vectơ chi phương lần lượt là \(\vec a = (1;2;2)\) và \({\vec a^\prime } = ( - 2; - 2;1)\).
Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|1 \cdot ( - 2) + 2 \cdot ( - 2) + 2 \cdot 1|}}{{\sqrt {{1^2} + {2^2} + {2^2}} \cdot \sqrt {{{( - 2)}^2} + {{( - 2)}^2} + {1^2}} }} = \frac{4}{9}\). Suy ra
c) \(d\) và \({d^\prime }\) có vectơ chi phương lần lượt là \(\vec a = (1;2; - 1)\) và \({\vec a^\prime } = (2;4;10)\).
Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|1.2 + 2.4 + ( - 1) \cdot 10|}}{{\sqrt {{1^2} + {2^2} + {{( - 1)}^2}} \cdot \sqrt {{2^2} + {4^2} + {{10}^2}} }} = 0\). Suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.