Câu hỏi:

16/08/2025 33 Lưu

Một mảnh vườn hình vuông có độ dài cạnh bằng \(x\) (mét). Người ta làm đường đi xung quanh mảnh vườn, có độ rộng như nhau và bằng \(y\) (mét).

Một mảnh vườn hình vuông có độ dài cạnh bằng   x   (mét). Người ta làm đường đi xung quanh mảnh vườn, có độ rộng như nhau và bằng   y   (mét).    a) Diện tích của cả mảnh vườn là   x 2   (m2).  b) Diện tích phần đất không làm lối đi là   y 2   (m2).  c) Diện tích phần đất làm đường đi là   S = x 2 − 2 y 2   (m2).  d) Diện tích phần đất làm đường lớn hơn 2 000 m2 khi   x = 48 m , y = 2 m . (ảnh 1)

a) Diện tích của cả mảnh vườn là \({x^2}\) (m2).

b) Diện tích phần đất không làm lối đi là \({y^2}\) (m2).

c) Diện tích phần đất làm đường đi là \(S = {x^2} - 2{y^2}\) (m2).

d) Diện tích phần đất làm đường lớn hơn 2 000 m2 khi \(x = 48{\rm{ m, }}y = 2{\rm{ m}}{\rm{.}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Đúng

Diện tích của cả mảnh vườn là \({x^2}\) (m2).

b) Đúng

Diện tích phần đất không làm lối đi là \({y^2}\) (m2).

c) Sai

Diện tích phần đất làm đường đi là \(S = {x^2} - {y^2}\) (m2).

d) Đúng.

Diện tích phần đất làm đường đi khi \(x = 48{\rm{ m, }}y = 2{\rm{ m}}\) là: \(S = {48^2} - {2^2} = \left( {48 + 2} \right) \cdot \left( {48 - 2} \right) = 50.46 = 2{\rm{ }}300\) (m2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng

Số tiền lãi trong năm thứ nhất của bác An là \(400.x\% = 400 \cdot \frac{x}{{100}} = 4x\) (triệu đồng).

Sau năm thứ nhất số tiền cả vốn và lãi của bác An là \(400 + 4x\) (triệu đồng).

b) Đúng

Số tiền lãi trong năm thứ hai của bác An là:

\(\left( {400 + 4x} \right).x\% = \left( {400 + 4x} \right).\frac{x}{{100}} = 4x + \frac{{{x^2}}}{{25}}\) (triệu đồng).

Sau năm thứ hai số tiền lãi và vốn của bác An là: \(4x + \frac{{{x^2}}}{{25}} + 400 + 4x = \frac{{{x^2}}}{{25}} + 8x + 400\) (triệu đồng).

c) Đúng

Sau hai năm gửi tiết kiệm bác An nhận số tiền gồm cả gốc lần lãi là 449,44 triệu đồng nên ta có:

\(\frac{{{x^2}}}{{25}} + 8x + 400 = 449,44\) (triệu đồng)

d) Sai

Giải phương trình, ta có: \(\frac{{{x^2}}}{{25}} + 8x + 400 = 449,44\) (triệu đồng)

\(\frac{{{x^2}}}{{25}} + 8x - 49,44 = 0\)

\({x^2} + 200x - 1236 = 0\)

\({x^2} - 6x + 206x - 1236 = 0\)

\(x\left( {x - 6} \right) + 206\left( {x - 6} \right) = 0\)

\(\left( {x - 6} \right)\left( {x + 206} \right) = 0\)

Do đó, suy ra \(x = 6\) (thỏa mãn) hoặc \(x = - 206\) (loại)

Vậy lãi suất cố định mà bác An gửi là 6%.

Lời giải

Lời giải

a) Đúng

Vì độ dài đoạn dây lớn và nhỏ được cắt ra lần lượt là \(4x\) và \(4y\) \(\left( {x,y \in {\mathbb{N}^*},{\rm{ cm}}} \right)\) thì cạnh mỗi hình vuông lớn và nhỏ có độ dài lần lượt là \(x\) và \(y\) (cm).

Vì \(4x + 4y = 200\) nên \(x + y = 50\) (cm).

Do đó, tổng độ dài hai cạnh hình vuông lớn và nhỏ là 50 cm.

b) Đúng

Diện tích phần nằm giữa hai hình vuông là: \(S = {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) = 50\left( {x - y} \right){\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

c) Đúng

Để diện tích phần nằm giữa hai hình vuông lớn nhất thì \(\left( {x - y} \right)\) phải đạt giá trị lớn nhất.

Mà \(x + y = 50\), khi đó \(x = 49{\rm{ cm}},y = 1{\rm{ cm}}{\rm{.}}\)

d) Đúng

Để diện tích phần nằm giữa hai hình vuông lớn nhất thì cắt sợi dây có độ dài thành hai đoạn 196 cm và 4 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP