Câu hỏi:

16/08/2025 27 Lưu

Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi số nhỏ nhất có giá trị bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án: 24

Gọi số tự nhiên nhỏ nhất thỏa mãn là \(x{\rm{ }}\left( {x \in \mathbb{N}} \right)\).

Vì đây là ba số tự nhiên liên tiếp nên ta có: \(x;x + 1;x + 2{\rm{ }}\left( {x \in \mathbb{N}} \right)\).

Vì tích của hai số sau lớn hơn tích của hai số trước là 50 nên \(\left( {x + 1} \right)\left( {x + 2} \right) - x\left( {x + 1} \right) = 50\).

Suy ra \({x^2} + 3x + 2 - {x^2} - x = 50\)

\(2x + 2 = 50\)

\(2x = 48\)

\(x = 24\) (thỏa mãn).

Vậy số nhỏ nhất là 24.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng

Diện tích của khu đất để trồng hoa là: \({S_1} = 2x\left( {y + 1} \right) = 2xy + 2x{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right).\)

b) Sai

Chiều dài của khu đất dùng để trồng cỏ là: \(2y + 12 - y - 1 = y + 11{\rm{ }}\left( {\rm{m}} \right)\).

c) Sai

Diện tích của khu đất dùng để trồng cỏ là \({S_2} = \left( {y + 11} \right).2x = 2xy + 22x{\rm{ }}\left( {{{\rm{m}}^2}} \right)\)

d) Đúng

Diện tích của cả mảnh vườn là \(S = {S_1} + {S_2} = 2xy + 2x + 2xy + 22x = 4xy + 24x{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Thay \(x = 4;y = 4\) vào \(S,\) ta được: \(S = 4 \cdot 4 \cdot 4 + 24 \cdot 4 = 160{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Lời giải

a) Đúng

Vì người ta cắt mỗi góc của tấm bìa một hình vuông cạnh \({y^2}{\rm{ + 1 }}\left( {{\rm{cm}}} \right)\) nên chiều dài của hình hộp chữ nhật là: \(x + 43 - 2\left( {{y^2} + 1} \right) = x - 2{y^2} + 41{\rm{ }}\left( {{\rm{cm}}} \right)\).

b) Đúng

Vì người ta cắt mỗi góc của tấm bìa một hình vuông cạnh \({y^2}{\rm{ + 1 }}\left( {{\rm{cm}}} \right)\) nên chiều rộng của hình hộp chữ nhật là: \(x + 30 - 2\left( {{y^2}{\rm{ + 1}}} \right) = x - 2{y^2} + 28{\rm{ }}\left( {{\rm{cm}}} \right).\)

c) Đúng

Biểu thức biểu thị diện tích xung quanh của hình hộp chữ nhật là:

\(S = 2\left( {x - 2{y^2} + 28 + x - 2{y^2} + 41} \right) \cdot \left( {{y^2} + 1} \right) = \left( {4x - 8{y^2} + 138} \right) \cdot \left( {{y^2} + 1} \right)\)

\( = 4x{y^2} - 8{y^4} + 138{y^2} + 4x - 8{y^2} + 138\)

\( = 4x{y^2} - 8{y^4} + 130{y^2} + 4x + 138{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

d) Sai.

Thay \(x = 16;y = 4\) vào \(S = 4x{y^2} - 8{y^4} + 130{y^2} + 4x + 138{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\) ta được:

\(S = 4 \cdot 16 \cdot {4^2} - 8 \cdot {4^4} + 130 \cdot {4^2} + 4 \cdot 4 + 138 = 1210{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP