Câu hỏi:

19/08/2025 182 Lưu

Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1; 3; 2) và đường thẳng d có phương trình x=1-4ty=tz=2+t. Lập phương trình mặt phẳng (P) chứa điểm A và vuông góc đường thẳng d.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: -3x - 2y - 10z + 23 = 0

Đường thẳng d đi qua điểm M(1; 0; 2) và có vectơ chỉ phương u=(-4; 1; 1).

Ta có: AM=(2; -3; 0); [AM, u] = (-3; -2; -10)

Mặt phẳng (P) chứa điểm A và đường thẳng d có vectơ pháp tuyến .

Vậy phương trình mặt phẳng (P) là -3(x+1) - 2(y-3) - 10(z-2) = 0  -3x - 2y - 10z + 23 = 0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)

Giao điểm  của \({d_1}\)  và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z =  - 1\\x - 2y = 3\\x - 2z =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)

Lời giải

Đáp án: \(\sin \alpha  = \frac{{\sqrt {418} }}{{22}}\)

(Trả lời ngắn) Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân đỉnh A. Biết BC = a√3 và góc ABC = 30 độ (ảnh 1)

Gọi \(O\) là trung điểm \(BC\).

Ta có: BO=AB.cos30oAB=BOcos30o=a32.32=a=ACAO=AB.sin30o=a2.

Theo đề bài:

2CM=3CC'CM=32CC'CC'+C'M=32CC'C'M=12CC'C'M=a2

(Trả lời ngắn) Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân đỉnh A. Biết BC = a√3 và góc ABC = 30 độ (ảnh 2)

Coi \(a = 1\).

Gắn hệ trục tọa độ \(Oxyz\)như hình vẽ với \(O\left( {0;\,0;\,0} \right)\), \(A\left( {0;\,\frac{1}{2};\,0} \right)\), \(B\left( {\frac{{\sqrt 3 }}{2};\,0;\,0} \right)\), \(C\left( { - \frac{{\sqrt 3 }}{2};\,0;\,0} \right)\), \(B'\left( {\frac{{\sqrt 3 }}{2};\,0;\,1} \right)\), \(M\left( { - \frac{{\sqrt 3 }}{2};\,0;\,\frac{3}{2}} \right)\).

Khi đó \(\left( {ABC} \right) \equiv \left( {Oxy} \right):z = 0 \Rightarrow \left( {ABC} \right)\) có một véc-tơ pháp tuyến là \(\overrightarrow k  = \left( {0;\,0;\,1} \right)\).

Ta có: \(\overrightarrow {AB'}  = \left( {\frac{{\sqrt 3 }}{2};\, - \frac{1}{2};\,1} \right)\), \(\overrightarrow {AM}  = \left( { - \frac{{\sqrt 3 }}{2};\, - \frac{1}{2};\,\frac{3}{2}} \right)\)\( \Rightarrow \overrightarrow {{n_{\left( {AB'M} \right)}}}  = 4\left[ {\overrightarrow {AB'} ,\overrightarrow {AM} } \right] = \left( {1;\,5\sqrt 3 ;\,2\sqrt 3 } \right)\).

Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'M} \right)\).

Vậy \[{\rm{cos}}\alpha  = \frac{{\left| {\overrightarrow k .\overrightarrow {{n_{\left( {AB'M} \right)}}} } \right|}}{{\left| {\overrightarrow k } \right|.\left| {\overrightarrow {{n_{\left( {AB'M} \right)}}} } \right|}} = \frac{{\left| {2\sqrt 3 } \right|}}{{1.2\sqrt {22} }} = \sqrt {\frac{3}{{22}}}  \Rightarrow {\rm{sin}}\alpha  = \sqrt {1 - {\rm{co}}{{\rm{s}}^2}\alpha }  = \sqrt {\frac{{19}}{{22}}}  = \frac{{\sqrt {418} }}{{22}}\].