Câu hỏi:

17/08/2025 4 Lưu

Trong không gian \[Oxyz\], phương trình mặt phẳng chứa hai đường thẳng: \[\left( d \right):\left\{ \begin{array}{l}x = t + 2\\y = 3t - 1\\z = 2t + 1\end{array} \right.\] và \[\left( \Delta  \right):\left\{ \begin{array}{l}x = m + 3\\y = 3m - 2\\z = 2m + 1\end{array} \right.\] có dạng \[x + ay + bz + c = 0\]. Tính \[P = a + 2b + 3c\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \[P = 0\]

Ta có \[d{\rm{//}}\Delta \].

Chọn \[A\left( {2;\, - 1;\,1} \right) \in \left( d \right),\,B\left( {3;\, - 2;\,1} \right) \in \left( \Delta  \right)\].

\[\overrightarrow {AB}  = \left( {1;\, - 1;\,0} \right)\]

Phương trình mặt phẳng chứa hai đường thẳng \[\left( d \right)\] và \[\left( \Delta  \right)\] qua \[A\left( {2;\, - 1;\,1} \right)\] và có VTPT \[\overrightarrow n  = \left[ {\overrightarrow {AB} ,\,\overrightarrow {{u_{\left( d \right)}}} } \right] = \left( { - 2;\, - 2;\,4} \right) =  - 2\left( {1;\,1;\, - 2} \right)\] là:

\[1\left( {x - 2} \right) + 1\left( {y + 1} \right) - 2\left( {z - 1} \right) = 0 \Leftrightarrow x + y - 2z + 1 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 45o

\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH}  = \left( {2;1;2} \right)\]làm VTPT

\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n  = \left( {1;1;0} \right)\]

Ta có cosP,Q^=OH.nOH.n=12P,Q^=450

Lời giải

Đáp án: x=1y=1+2tz=22t

Ta có BC=(0; -2; -2), BD=(-1; -1; -1)

Mặt phẳng BCD có một véctơ pháp tuyến là 

Đường thẳng vuông góc với mặt phẳng ABC có một véctơ chỉ phương là u=0;2;2.

Đường thẳng đi qua B và vuông góc với mặt phẳng (BCD) có phương trình là x=1y=1+2tz=22t.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP