Câu hỏi:

17/08/2025 3 Lưu

Trong không gian với hệ toạ độ Oxyz, cho điểm \(I(1;2;3)\) và mặt cầu tâm \(I\) đi qua điểm \(A(0;4;5)\). Tính bán kính \(R\) của mặt cầu đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mặt cầu tâm I đi qua điểm A nên bán kính của mặt cầu tâm I là:

\({\rm{R}} = {\rm{A}} = \sqrt {{{(0 - 1)}^2} + {{(4 - 2)}^2} + {{(5 - 3)}^2}}  = 3\)

Đường kính của mặt cầu đó bằng \(2R = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt cầu \((S)\) có đường kính AB nên có tâm \(J(2;4;4)\) là trung điểm của $A B$ và bán kính \(R = JA = \sqrt {11} \).

Vậy \((S)\) có phương trình: \({(x - 2)^2} + {(y - 4)^2} + {(z - 4)^2} = 11\).

Lời giải

Mặt cầu \(\left( {{S^\prime }} \right)\) có tâm \(J( - 2;0;5)\) và bán kính \({R^\prime } = \sqrt {13} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP