Câu hỏi:

19/08/2025 37 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S)

Cho hai mệnh đề : “Tứ giác  là hình vuông” và : “Tứ giác  là hình chữ nhật có hai đường chéo vuông góc với nhau”.

a) Mệnh đề đảo của mệnh đề “ là mệnh đề: “Nếu  là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác  là hình vuông”.

b) Hai mệnh đề   không tương đương với nhau.

c) Mệnh đề  là mệnh đề sai.

d)  là điều kiện cần và đủ để có .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Mệnh đề đảo của mệnh đề “ là mệnh đề” và được phát biểu là: “Nếu  là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác  là hình vuông”.

b) Sai. Hai mệnh đề   tương đương với nhau.

c) Sai. Mệnh đề  là mệnh đề đúng.

d) Đúng.  tương đương nên  là điều kiện cần và đủ để có .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\).

b) Đúng. \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}}\).

Do đó \[\cos \alpha = - \sqrt {\frac{{16}}{{25}}} = - \frac{4}{5}\].

c) Sai. Ta có \[\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = - \frac{3}{4} \Rightarrow \,\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha = \frac{3}{4}\].

d) Đúng. \[A = \frac{{\tan \alpha - \cot \left( {180^\circ - \alpha } \right)}}{{\sin \left( {90^\circ - \alpha } \right)}} = \frac{{\tan \alpha - \frac{1}{{\tan \left( {180^\circ - \alpha } \right)}}}}{{\cos \alpha }} = \frac{{\frac{{ - 3}}{4} - \frac{4}{3}}}{{\frac{{ - 4}}{5}}} = \frac{{125}}{{48}}\].

Lời giải

Gọi \(a,b,c\) theo thứ tự là số học sinh chỉ thích một môn Toán, Văn, Anh.

\(x\) là số học sinh chỉ thích hai môn là Toán và Anh.

\(y\) là số học sinh chỉ thích hai môn là Anh và Văn.

\(z\) là số học sinh chỉ thích hai môn là Văn và Toán.

Số em thích ít nhất một môn là \(45 - 6 = 39\).

Ta có hệ \(\left\{ \begin{array}{l}a + x + z + 5 = 25\\b + y + z + 5 = 18\\c + x + y + 5 = 20\\x + y + z + a + b + c + 5 = 39\end{array} \right. \Rightarrow a + b + c = 20\).

Vậy tổng số học sinh thích chỉ một trong ba môn Toán, Anh, Văn là 20 học sinh.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP