Trong không gian Oxyz (đơn vị của các trục toạ độ là mét), các nhà nghiên cứu khí tượng dùng một phần mềm mô phỏng bề mặt của một quả bóng thám không có dạng hình cầu bằng phương trinh \({(x - 300)^2} + {(y - 400)^2} + {(z - 2000)^2} = 1\). Tìm toạ độ tâm, bán kính của quả bóng và tính khoảng cách từ tâm của quả bóng đến mặt đất có phương trình \(z = 0\).
Trong không gian Oxyz (đơn vị của các trục toạ độ là mét), các nhà nghiên cứu khí tượng dùng một phần mềm mô phỏng bề mặt của một quả bóng thám không có dạng hình cầu bằng phương trinh \({(x - 300)^2} + {(y - 400)^2} + {(z - 2000)^2} = 1\). Tìm toạ độ tâm, bán kính của quả bóng và tính khoảng cách từ tâm của quả bóng đến mặt đất có phương trình \(z = 0\).

Quảng cáo
Trả lời:

Tọa độ tâm I(300; 400; 2000), R =1.
Khoảng cách từ tâm của quá bóng đến mặt đất có phương trình \(z = 0\) là \(d = \frac{{|2000|}}{{\sqrt {{1^2}} }} = 2000\) (mét).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình tham số của đường thẳng d đi qua điểm \({\rm{A}}( - 688\); - 185; 8) và có vectơ chỉ phương \(\vec u = (91;75;0)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 688 + 91t}\\{y = - 185 + 75t{\rm{ (t là tham s?)}}{\rm{. }}}\\{z = 8}\end{array}} \right.\)
Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.
Vi B \(B\) d nên B(- 688 + 91t; - 185 + 75t; 8).
\(B\) là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa khi \({\rm{OB}} = 417\), tức là \(\sqrt {{{( - 688 + 91t)}^2} + {{( - 185 + 75t)}^2} + {8^2}} = 417\)\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)\( \Leftrightarrow t = 3{\rm{ hay }}t = 8.{\rm{ }}\)
\( + {\rm{ Vì }} = 3,{\rm{ ta có }}B( - 415;40;8){\rm{. }}\)
+ Với \( = 3\), ta có \(B( - 415;40;8)\).
Khi đó \({\rm{AB}} = \sqrt {{{( - 415 + 688)}^2} + {{(40 + 185)}^2}} \approx 353,77\).
+ Với \({\rm{t}} = 8\), ta có \({\rm{B}}( - 88;415;8)\). Khi đó \(AB = \sqrt {{{( - 88 + 688)}^2} + {{(415 + 185)}^2}} \approx 848,53\).
Vi \(353,77 < 848,53\) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là \(( - 415;40;8)\).
b) Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi \({\rm{OH}} \bot {\rm{d}}\).
Vi H \( \in \) d nên \(H( - 688 + 91t\) '; - \(185 + 75\) t'; 8).
Ta có \(\overrightarrow {OH} = ( - 688 + 91t; - 185 + 75t;8)\).
\({\rm{OH}} \bot {\rm{d}} \Leftrightarrow \overrightarrow {OH} \bot \vec u \Leftrightarrow \overrightarrow {OH} \cdot \vec u = 0\)
\( \Leftrightarrow ( - 688 + 91t) \cdot 91 + ( - 185 + 75t) \cdot 75 + 8 \cdot 0 = 0\)
\( \Leftrightarrow 13906{{\rm{t}}^\prime } - 76483 = 0 \Leftrightarrow {{\rm{t}}^\prime } = \frac{{11}}{2}\). Suy ra H \(\left( { - \frac{{375}}{2};\frac{{455}}{2};8} \right)\).
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
\({\rm{OH}} = \sqrt {{{\left( { - \frac{{375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}} \approx 294,92(\;{\rm{km}}){\rm{. }}\)
c) Từ kết quả ở câu a), ta suy ra toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa là \(( - 88;415;8)\).
Lời giải
a) Mặt cầu \((S)\) có tâm \(I( - 6; - 1;4)\) và bán kính \(R = 2\) nên có phương trình:
\({(x + 6)^2} + {(y + 1)^2} + {(z - 4)^2} = 4.{\rm{ }}\)
b) Ta có \(IM = \sqrt 3 < R\), suy ra điểm \(M\) nằm trong mặt cầu \((S)\) và người đó có thể sử dụng được dịch vụ của trạm nói trên.
c) Ta có \(IN = \sqrt {35} > R\), suy ra điểm \(N\) nằm ngoài mặt cầu \((S)\) và người đó không thể sử dụng được dịch vụ của trạm nói trên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.