Câu hỏi:

18/08/2025 39 Lưu

Tính khoảng cách trên mặt đất từ vị trí A là giao giữa kinh tuyến gốc với xích đạo đến vị trí B:45°N,30°E.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vi A là giao giữa kinh tuyến gốc với xích đạo nên \({\rm{A}}(1;0;0)\). Do đó \(\overrightarrow {OA}  = (1;0;0)\)

Điểm Bcos45°cos30°;cos45°sin30°;sin45° hay B64;24;22

Suy ra \(\overrightarrow {OB}  = \left( {\frac{{\sqrt 6 }}{4};\frac{{\sqrt 2 }}{4};\frac{{\sqrt 2 }}{2}} \right)\)

Có \(\overrightarrow {OA}  \cdot \overrightarrow {OB}  = \frac{{\sqrt 6 }}{4}\)

Vi A, B thuộc mặt đất nên \(|\overrightarrow {OA} | = |\overrightarrow {OB} | = 1\)

Do đó cosAOB^=OAOB|OA||OB|0,6124. Suy ra AOB^52,2388°.

Mặt khác, đường tròn tâm O đi qua \({\rm{A}},{\rm{B}}\) có bán kính 1 và chu vi là \(2\pi  \approx 6,2832\), nên cung nhỏ  của đường tròn đó có độ dài xấp xỉ bằng \(\frac{{52,2388}}{{360}} \cdot 6,2832 \approx 0,9117\).

Do 1 đơn vị dài trong không gian Oxyz tương ứng với 6371 km trên thực tế, nên khoảng cách trên mặt đất giữa hai vị trí \({\rm{A}},{\rm{B}}\) xấp xỉ bằng \(0,9117.6371 = \) \(5808,4407(\;{\rm{km}})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình tham số của đường thẳng d đi qua điểm \({\rm{A}}( - 688\); - 185; 8) và có vectơ chỉ phương \(\vec u = (91;75;0)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x =  - 688 + 91t}\\{y =  - 185 + 75t{\rm{ (t là  tham s?)}}{\rm{. }}}\\{z = 8}\end{array}} \right.\)

Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

Vi B \(B\) d nên B(- 688 + 91t; - 185 + 75t; 8).

\(B\) là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa khi \({\rm{OB}} = 417\), tức là \(\sqrt {{{( - 688 + 91t)}^2} + {{( - 185 + 75t)}^2} + {8^2}}  = 417\)\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)\( \Leftrightarrow t = 3{\rm{ hay }}t = 8.{\rm{ }}\)

\( + {\rm{ Vì }} = 3,{\rm{ ta có  }}B( - 415;40;8){\rm{. }}\)

+ Với \( = 3\), ta có \(B( - 415;40;8)\).

Khi đó \({\rm{AB}} = \sqrt {{{( - 415 + 688)}^2} + {{(40 + 185)}^2}}  \approx 353,77\).

+ Với \({\rm{t}} = 8\), ta có \({\rm{B}}( - 88;415;8)\). Khi đó \(AB = \sqrt {{{( - 88 + 688)}^2} + {{(415 + 185)}^2}}  \approx 848,53\).

Vi \(353,77 < 848,53\) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là \(( - 415;40;8)\).

b) Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi \({\rm{OH}} \bot {\rm{d}}\).

Vi H \( \in \) d nên \(H( - 688 + 91t\) '; - \(185 + 75\) t'; 8).

Ta có \(\overrightarrow {OH}  = ( - 688 + 91t; - 185 + 75t;8)\).

\({\rm{OH}} \bot {\rm{d}} \Leftrightarrow \overrightarrow {OH}  \bot \vec u \Leftrightarrow \overrightarrow {OH}  \cdot \vec u = 0\)

\( \Leftrightarrow ( - 688 + 91t) \cdot 91 + ( - 185 + 75t) \cdot 75 + 8 \cdot 0 = 0\)

\( \Leftrightarrow 13906{{\rm{t}}^\prime } - 76483 = 0 \Leftrightarrow {{\rm{t}}^\prime } = \frac{{11}}{2}\). Suy ra H \(\left( { - \frac{{375}}{2};\frac{{455}}{2};8} \right)\).

Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

\({\rm{OH}} = \sqrt {{{\left( { - \frac{{375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}}  \approx 294,92(\;{\rm{km}}){\rm{. }}\)

c) Từ kết quả ở câu a), ta suy ra toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa là \(( - 88;415;8)\).

Lời giải

a) Mặt cầu \((S)\) có tâm \(I( - 6; - 1;4)\) và bán kính \(R = 2\) nên có phương trình:

\({(x + 6)^2} + {(y + 1)^2} + {(z - 4)^2} = 4.{\rm{ }}\)

b) Ta có \(IM = \sqrt 3  < R\), suy ra điểm \(M\) nằm trong mặt cầu \((S)\) và người đó có thể sử dụng được dịch vụ của trạm nói trên.

c) Ta có \(IN = \sqrt {35}  > R\), suy ra điểm \(N\) nằm ngoài mặt cầu \((S)\) và người đó không thể sử dụng được dịch vụ của trạm nói trên.