Tại một thời điểm có bão, khi đặt hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là kilômét) ở một vị trí phù hợp thì tâm bão có tọ̣a độ \((300;200;1)\).
a) Lập phương trình mặt cầu để mô tả ranh giới bên ngoài vùng ảnh hưởng của bão ở cấp độ: bán kính gió mạnh từ cấp 10 , giật từ cấp 12 trở lên khoảng 100 km tính từ tâm bão.
b) Tại một vị trí có tọa độ \((350;245;1)\) thì có bị ảnh hưởng bởi cơn bão được mô tả ở câu a) không?
Tại một thời điểm có bão, khi đặt hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là kilômét) ở một vị trí phù hợp thì tâm bão có tọ̣a độ \((300;200;1)\).

a) Lập phương trình mặt cầu để mô tả ranh giới bên ngoài vùng ảnh hưởng của bão ở cấp độ: bán kính gió mạnh từ cấp 10 , giật từ cấp 12 trở lên khoảng 100 km tính từ tâm bão.
b) Tại một vị trí có tọa độ \((350;245;1)\) thì có bị ảnh hưởng bởi cơn bão được mô tả ở câu a) không?
Quảng cáo
Trả lời:
a) Phương trình mặt cầu cần tìm là:
\({(x - 300)^2} + {(y - 200)^2} + {(z - 1)^2} = {100^2}.\)
b) Khoảng cách từ vị trí có tọa độ \((350;245;1)\) đến tâm bão là:
\(d = \sqrt {{{(350 - 300)}^2} + {{(245 - 200)}^2} + {{(1 - 1)}^2}} = \sqrt {4525} < 100.\)
Vậy vị trí có toạ độ \((350;245;1)\) bị ảnh hưởng bởi cơn bão.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình tham số của đường thẳng d đi qua điểm \({\rm{A}}( - 688\); - 185; 8) và có vectơ chỉ phương \(\vec u = (91;75;0)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 688 + 91t}\\{y = - 185 + 75t{\rm{ (t là tham s?)}}{\rm{. }}}\\{z = 8}\end{array}} \right.\)
Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.
Vi B \(B\) d nên B(- 688 + 91t; - 185 + 75t; 8).
\(B\) là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa khi \({\rm{OB}} = 417\), tức là \(\sqrt {{{( - 688 + 91t)}^2} + {{( - 185 + 75t)}^2} + {8^2}} = 417\)\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)\( \Leftrightarrow t = 3{\rm{ hay }}t = 8.{\rm{ }}\)
\( + {\rm{ Vì }} = 3,{\rm{ ta có }}B( - 415;40;8){\rm{. }}\)
+ Với \( = 3\), ta có \(B( - 415;40;8)\).
Khi đó \({\rm{AB}} = \sqrt {{{( - 415 + 688)}^2} + {{(40 + 185)}^2}} \approx 353,77\).
+ Với \({\rm{t}} = 8\), ta có \({\rm{B}}( - 88;415;8)\). Khi đó \(AB = \sqrt {{{( - 88 + 688)}^2} + {{(415 + 185)}^2}} \approx 848,53\).
Vi \(353,77 < 848,53\) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là \(( - 415;40;8)\).
b) Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi \({\rm{OH}} \bot {\rm{d}}\).
Vi H \( \in \) d nên \(H( - 688 + 91t\) '; - \(185 + 75\) t'; 8).
Ta có \(\overrightarrow {OH} = ( - 688 + 91t; - 185 + 75t;8)\).
\({\rm{OH}} \bot {\rm{d}} \Leftrightarrow \overrightarrow {OH} \bot \vec u \Leftrightarrow \overrightarrow {OH} \cdot \vec u = 0\)
\( \Leftrightarrow ( - 688 + 91t) \cdot 91 + ( - 185 + 75t) \cdot 75 + 8 \cdot 0 = 0\)
\( \Leftrightarrow 13906{{\rm{t}}^\prime } - 76483 = 0 \Leftrightarrow {{\rm{t}}^\prime } = \frac{{11}}{2}\). Suy ra H \(\left( { - \frac{{375}}{2};\frac{{455}}{2};8} \right)\).
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
\({\rm{OH}} = \sqrt {{{\left( { - \frac{{375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}} \approx 294,92(\;{\rm{km}}){\rm{. }}\)
c) Từ kết quả ở câu a), ta suy ra toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa là \(( - 88;415;8)\).
Lời giải
a) Ta có góc \(\theta \) mà đường bay tạo với phương ngang chính là góc giữa đường thẳng GH và mặt phẳng \(({\rm{Oxy}})\).
Tại thời điểm \({\rm{t}} = 0\) thì \(\overrightarrow {{r_0}} = (1;0,5;0)\). Trực thăng cất cánh từ điểm \(G\) nên \({\rm{G}}(1;0,5;0)\).
Tại thời điểm \({\rm{t}} = 1\), trực thăng bay đến vị trí K thuộc đường thẳng GH với \({\rm{K}}(2\); 2,5 ; 2 ).
Đường thẳng GH có vectơ chỉ phương \(\overrightarrow {GK} = (1;2;2)\) và mặt phẳng \(({\rm{Oxy}})\) có vectơ pháp tuyến \(\vec k = (0;0;1)\)
Ta có \(\sin ({\rm{GH}},({\rm{Oxy}})) = \frac{{|1 \cdot 0 + 2 \cdot 0 + 2 \cdot 1|}}{{\sqrt {{1^2} + {2^2} + {2^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{2}{3}\).
Suy ra . Vậy
b) Gọi \({{\rm{K}}^\prime }\) là hình chiếu của điểm K lên mặt phẳng (Oxy). Khi đó K (2; 2,5 ; 0).
Vi F là hình chiếu của điểm H lên mặt phẳng (Oxy) nên \({{\rm{K}}^\prime } \in {\rm{GF}}\).
Do đó đường thẳng GF có vectơ chỉ phương là \(\overrightarrow {G{K^\prime }} = (1;2;0)\).
Phương trình tham số của đường thẳng GF là \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + {t^\prime }}\\{y = 0,5 + 2{t^\prime }{\rm{ ( }}{{\rm{t}}^\prime }{\rm{ là tham }}}\\{z = 0}\end{array}} \right.\) số).
c) Trực thăng bay vào mây ở độ cao 2 km , tức là vị trí điểm mà trực thăng bắt đầu đi vào đám mây có cao độ \(z = 2\), khi đó \(2t = 2\), suy ra \(t = 1\).
Vậy tọa độ điểm mà trực thăng bắt đầu đi vào đám mây là \((2;2,5;2)\).
d) Ta có \({\rm{H}}(1 + {\rm{t}};0,5 + 2{\rm{t}};2{\rm{t}})\). Khi đó, \(\overrightarrow {HM} = (4 - t;4 - 2t;3 - 2t)\).
Đường thẳng GH có vectơ chỉ phương \(\overrightarrow {GK} = (1;2;2)\).
HM vuông góc với đường bay GH khi \(\overrightarrow {HM} \bot \overrightarrow {GK} \Leftrightarrow \overrightarrow {HM} \cdot \overrightarrow {GK} = 0\)
\( \Leftrightarrow (4 - t) \cdot 1 + (4 - 2t) \cdot 2 + (3 - 2t) \cdot 2 = 0 \Leftrightarrow t = 2.{\rm{ }}\)
Vậy \({\rm{t}} = 2\) thì HM vuông góc với đường bay GH .
Khi đó, khoảng cách từ đỉnh núi đến máy bay trực thăng là:
\(HM = \sqrt {{{(4 - 2)}^2} + {{(4 - 2 \cdot 2)}^2} + {{(3 - 2 \cdot 2)}^2}} = \sqrt 5 (\;{\rm{km}})\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






