Trong không gian, cho hình lập phương \(ABCD\,A'B\,'C'D'\). Góc giữa hai vectơ \(\overrightarrow {BD} \,,\,\overrightarrow {B'C} \)bằng
Quảng cáo
Trả lời:


Ta có: \(\overrightarrow {BD} \, = \,\,\overrightarrow {B'D'} \). Do đó \(\left( {\overrightarrow {BD} \,,\,\overrightarrow {B'C} } \right)\, = \,\left( {\overrightarrow {B'D'} \,,\,\overrightarrow {B'C} } \right)\, = \widehat {\,D'B'C'}\)
Vì \(B'C = \,CD'\, = \,D'B'\)nên tam giác \(B'CD'\)là tam giác đều.
Suy ra \(\widehat {\,D'B'C'}\, = \,60^\circ \). Vậy \(\left( {\overrightarrow {BD} \,,\,\overrightarrow {B'C} } \right)\, = \,60^\circ \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì M là trung điểm của BB' nên ta có:
\(2\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AB'} = \overrightarrow {AB} + \overrightarrow {AA'} + \overrightarrow {A'B'} = 2\overrightarrow {AB} + \overrightarrow {AA'} \) \( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AA'} \).
Lời giải
Ta có:
\[\overrightarrow {AB} \left( {\overrightarrow {AB} - \overrightarrow {CA} } \right) = \overrightarrow {AB} .\overrightarrow {AB} + \overrightarrow {AB} .\overrightarrow {AC} = {\overrightarrow {AB} ^2} + \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\]
\[ = A{B^2} + AB.AC.\cos \left( {\widehat {BAC}} \right) = {4^2} + 4.4.\cos 60^\circ = {4^2} + \frac{{{4^2}}}{2} = \frac{{{{3.4}^2}}}{2} = 24\].
Trả lời: 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.