Câu hỏi:

25/08/2025 26 Lưu

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\]là hình vuông, \(SA\)vuông góc với mặt phẳng \((ABCD)\).Gọi \[I,J\] lần lượt là trung điểm của \[SA,SC\]. \[G\]là trọng tâm tam giác \[SBD\]

a) \(\overrightarrow {AC}  - \overrightarrow {AB}  = \overrightarrow {AD} \).  b) \(\overrightarrow {AS}  + \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AG} \). (ảnh 1)

a) \(\overrightarrow {AC}  - \overrightarrow {AB}  = \overrightarrow {AD} \).

b) \(\overrightarrow {AS}  + \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AG} \).

c) \[\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD}  = \overrightarrow 0 \]

d) \({\overrightarrow {AG} ^2} = {\overrightarrow {AS} ^2} + {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
a) \(\overrightarrow {AC}  - \overrightarrow {AB}  = \overrightarrow {AD} \).  b) \(\overrightarrow {AS}  + \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AG} \). (ảnh 2)

a) Ta có \[ABCD\] là hình vuông nên  \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \) ( qui tắc hình bình hành) suy ra\(\overrightarrow {AC}  - \overrightarrow {AB}  = \overrightarrow {AD} \).

b) Do \[G\]là trọng tâm tam giác \[SBD\] nên   

\(\overrightarrow {GS}  + \overrightarrow {GB}  + \overrightarrow {GD}  = \overrightarrow 0  \Rightarrow \left( {\overrightarrow {GA}  + \overrightarrow {AS} } \right) + \left( {\overrightarrow {GA}  + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA}  + \overrightarrow {AD} } \right) = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {AS}  + \overrightarrow {AB}  + \overrightarrow {AD}  = 3\overrightarrow {AG} .\)

c) Ta có\[ABCD\] là hình vuông nên \(AC \bot BD \Rightarrow \overrightarrow {AC} .\overrightarrow {BD}  = 0 \Rightarrow 2\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD}  = 0 \Rightarrow \overrightarrow {{\rm{IJ}}} .\overrightarrow {BD}  = 0\).

d) Do \[G\]là trọng tâm tam giác \[SBD\] nên

\(\overrightarrow {AS}  + \overrightarrow {AB}  + \overrightarrow {AD}  = 3\overrightarrow {AG} \)\({\left( {3\overrightarrow {AG} } \right)^2} = {\left( {\overrightarrow {AS}  + \overrightarrow {AB}  + \overrightarrow {AD} } \right)^2} \Rightarrow 9A{G^2} = A{S^2} + A{B^2} + A{D^2} + 2\overrightarrow {AS} \overrightarrow {AB}  + 2\overrightarrow {AS} \overrightarrow {AD}  + 2\overrightarrow {AD} \overrightarrow {AB} \;\left( 1 \right)\).

Vì \(SA\)vuông góc với mặt phẳng \((ABCD)\) nên\(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {AD}  = 0\\\overrightarrow {SA} .\overrightarrow {AB}  = 0\end{array} \right.\;\left( 2 \right)\).

 \[ABCD\]  là hình vuông nên \(\overrightarrow {AB} .\overrightarrow {AD}  = 0\left( 3 \right)\).

Từ \[\left( 1 \right);\left( 2 \right);\left( 3 \right)\] ta được \(9A{G^2} = A{S^2} + A{B^2} + A{D^2}.\)

Đáp án: a) Đúng;  b) Sai;  c) Sai;  d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian, cho tứ diện S.ABC có SA = SB = SC = AB = AC = 2, \(BC = 2\sqrt 2 \). Tính \(\overrightarrow {SC} .\overrightarrow {AB} \). (ảnh 1)

Vì BC2 = SB2 + SC2 nên DSBC vuông cân tại S.

Mặt khác SA = AC = SC = 2 Þ DSAC là tam giác đều.

Ta có \(\overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .\left( {\overrightarrow {SB}  - \overrightarrow {SA} } \right) = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA} \)\( = 0 - \left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {SA} } \right|.\cos \widehat {ASC} =  - 2.2.\cos 60^\circ  = \frac{{ - {2^2}}}{2} =  - 2\).

Vậy \(\overrightarrow {SC} .\overrightarrow {AB}  =  - 2\).

Trả lời: −2.

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, AD = 2, AA' = 3. Gọi M là một điểm trên đoạn CC' sao cho CM = 2MC'.  a) \(\overrightarrow {AA'}  = \frac{3}{2}\overrightarrow {CM} \). (ảnh 1)

a) Ta có \(\overrightarrow {AA'} \) cùng phương với \(\overrightarrow {CM} \) và \(AA' = \frac{3}{2}CM\), suy ra \(\overrightarrow {AA'}  = \frac{3}{2}\overrightarrow {CM} \).

b) Do \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {A'C'} \), suy ra \(\left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AM} ,\overrightarrow {AC} } \right) = \widehat {CAM}\),

suy ra \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \cos \widehat {CAM} = \frac{{AC}}{{AM}} = \frac{{\sqrt 5 }}{3}\).

c) Ta có \(\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {CM}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \frac{2}{3}\overrightarrow {AA'} \).

d) Ta có \(\overrightarrow {B'D}  = \overrightarrow {AD}  - \overrightarrow {AB'}  = \overrightarrow {AD}  - \left( {\overrightarrow {AB}  + \overrightarrow {AA'} } \right) =  - \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AA'} \).

Do đó \(\overrightarrow {AM} .\overrightarrow {B'D}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \frac{2}{3}\overrightarrow {AA'} } \right).\left( { - \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AA'} } \right)\)

\( =  - A{B^2} + A{D^2} - \frac{2}{3}A{A'^2} =  - 1 + 4 - 6 =  - 3\).

Đáp án: a) Đúng;  b) Sai;  c) Sai;  d) Sai.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP