Câu hỏi:

25/08/2025 7 Lưu

Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là điểm thỏa mãn \(\overrightarrow {GS}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)(tham khảo hình vẽ)

a) Hai vectơ \(\overrightarrow {AO} ;\overrightarrow {CO} \) bằng nhau.  b) \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \). (ảnh 1)

a) Hai vectơ \(\overrightarrow {AO} ;\overrightarrow {CO} \) bằng nhau.

b) \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \).

c) \(\overrightarrow {GS}  = 4\overrightarrow {OG} \).

d) Nếu tam giác DABC có AB = 2a; \(BC = a\sqrt 7 \); AC = 3a thì \(\overrightarrow {AB} .\overrightarrow {AC}  = 3{a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
a) Hai vectơ \(\overrightarrow {AO} ;\overrightarrow {CO} \) bằng nhau.  b) \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \). (ảnh 2)

a) Hai vectơ \(\overrightarrow {AO} ;\overrightarrow {CO} \) cùng độ dài nhưng ngược hướng nên hai vectơ này không bằng nhau.

b) Ta có \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC}  = 2\overrightarrow {SO} \).

c) \(\overrightarrow {GS}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {GS}  + \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  - 4\overrightarrow {OG}  = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GS}  - 4\overrightarrow {OG}  = \overrightarrow 0 \) (vì \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \))

\( \Leftrightarrow \overrightarrow {GS}  = 4\overrightarrow {OG} \).

d) Xét DABC có \(\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{4{a^2} + 9{a^2} - 7{a^2}}}{{2.2a.3a}} = \frac{{6{a^2}}}{{12{a^2}}} = \frac{1}{2}\).

Ta có \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \widehat {BAC}\)\( = 2a.3a.\frac{1}{2} = 3{a^2}\).

Đáp án: a) Sai;  b) Đúng;  c) Đúng;  d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cho hình lăng trụ ABC.A'B'C'. Gọi M là trung điểm của BB'. Trong các khẳng định sau, khẳng định nào đúng? (ảnh 1)

Vì M là trung điểm của BB' nên ta có:

\(2\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AB'}  = \overrightarrow {AB}  + \overrightarrow {AA'}  + \overrightarrow {A'B'}  = 2\overrightarrow {AB}  + \overrightarrow {AA'} \) \( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AA'} \).

Lời giải

Ta có:

\[\overrightarrow {AB} \left( {\overrightarrow {AB}  - \overrightarrow {CA} } \right) = \overrightarrow {AB} .\overrightarrow {AB}  + \overrightarrow {AB} .\overrightarrow {AC}  = {\overrightarrow {AB} ^2} + \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\]

\[ = A{B^2} + AB.AC.\cos \left( {\widehat {BAC}} \right) = {4^2} + 4.4.\cos 60^\circ  = {4^2} + \frac{{{4^2}}}{2} = \frac{{{{3.4}^2}}}{2} = 24\].

Trả lời: 24.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP