Câu hỏi:

25/08/2025 53 Lưu

Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3\,{\rm{kg}}\)được thiết kế với đĩa cân được giữ bởi bốn đoạn xích \(SA\,,\,SB\,,\,SC\,,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 90^\circ \). Biết độ lớn của lực căng cho mỗi sợi xích có dạng \(\frac{{a\sqrt 2 }}{4}\). Lấy \(g = 10\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\), khi đó giá trị của \[a\] bằng bao nhiêu?

khi đó giá trị của \[a\] bằng bao nhiêu? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
khi đó giá trị của \[a\] bằng bao nhiêu? (ảnh 2)

Gọi \(O\) là tâm của hình vuông \(ABCD\).

Ta có \[\overrightarrow {{\rm{O}}A}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {O\,S}  + \overrightarrow {SA}  + \overrightarrow {OS}  + \overrightarrow {SB}  + \overrightarrow {OS}  + \overrightarrow {SC}  + \overrightarrow {OS}  + \overrightarrow {SD}  = \overrightarrow 0 \]

\[ \Leftrightarrow \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  =  - 4\overrightarrow {OS}  = 4\overrightarrow {SO}  \Rightarrow \left| {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD} } \right| = \left| {4\overrightarrow {SO} } \right| = 4SO\].

Trọng lượng của vật nặng là \(P = mg = 3.10 = 30\,\left( N \right)\). Suy ra \(4\left| {\overrightarrow {SO} } \right| = P = 30\,\left( N \right) \Rightarrow SO = \frac{{15}}{2}\).

Lại có tam giác \(ASC\) vuông cân tại \(S\) nên

\(SO = SA.\sin \widehat {SAC} \Rightarrow SA = \frac{{SO}}{{\sin \widehat {SAC}}} = \frac{{\frac{{15}}{2}}}{{\sin 45^\circ }} = \frac{{15\sqrt 2 }}{2} = \frac{{30\sqrt 2 }}{4} \Rightarrow a = 30\).

Vậy \(a = 30\).

Trả lời: 30.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian, cho tứ diện S.ABC có SA = SB = SC = AB = AC = 2, \(BC = 2\sqrt 2 \). Tính \(\overrightarrow {SC} .\overrightarrow {AB} \). (ảnh 1)

Vì BC2 = SB2 + SC2 nên DSBC vuông cân tại S.

Mặt khác SA = AC = SC = 2 Þ DSAC là tam giác đều.

Ta có \(\overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .\left( {\overrightarrow {SB}  - \overrightarrow {SA} } \right) = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA} \)\( = 0 - \left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {SA} } \right|.\cos \widehat {ASC} =  - 2.2.\cos 60^\circ  = \frac{{ - {2^2}}}{2} =  - 2\).

Vậy \(\overrightarrow {SC} .\overrightarrow {AB}  =  - 2\).

Trả lời: −2.

Câu 2

A. \[\overrightarrow {AD} \, + \,\overrightarrow {BC} \].                                     

B. \[\overrightarrow {DA} \, + \,\overrightarrow {CB} \] .

C. \[\overrightarrow {DA} \, + \,\overrightarrow {BC} \].  
D. \[\overrightarrow {AD} \, + \,\overrightarrow {CB} \].

Lời giải

Theo quy tắc ba điểm, ta có: \[\overrightarrow {AB\,} \, = \overrightarrow {AD} \, + \,\overrightarrow {DB} \]

Do đó:\[\overrightarrow {AB} \, + \,\overrightarrow {CD} \, = \,\overrightarrow {AD} \, + \,\overrightarrow {DB} \, + \,\overrightarrow {CD} \]

         \( = \overrightarrow {AD} \, + \left( {\,\overrightarrow {DB} \, + \,\overrightarrow {CD} } \right)\) \( = \,\overrightarrow {AD} \, + \left( {\,\,\overrightarrow {CD} \, + \,\overrightarrow {DB} } \right)\)\( = \,\overrightarrow {AD} \, + \,\overrightarrow {CB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

 A. \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \).           

B. \(\overrightarrow {SA}  - \overrightarrow {SB}  + \overrightarrow {SC}  - \overrightarrow {SD}  = \overrightarrow 0 \).

C. \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = \overrightarrow 0 \).     
D. \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP