Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3\,{\rm{kg}}\)được thiết kế với đĩa cân được giữ bởi bốn đoạn xích \(SA\,,\,SB\,,\,SC\,,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 90^\circ \). Biết độ lớn của lực căng cho mỗi sợi xích có dạng \(\frac{{a\sqrt 2 }}{4}\). Lấy \(g = 10\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\), khi đó giá trị của \[a\] bằng bao nhiêu?
Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3\,{\rm{kg}}\)được thiết kế với đĩa cân được giữ bởi bốn đoạn xích \(SA\,,\,SB\,,\,SC\,,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 90^\circ \). Biết độ lớn của lực căng cho mỗi sợi xích có dạng \(\frac{{a\sqrt 2 }}{4}\). Lấy \(g = 10\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\), khi đó giá trị của \[a\] bằng bao nhiêu?
![khi đó giá trị của \[a\] bằng bao nhiêu? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid17-1756113385.png)
Quảng cáo
Trả lời:

![khi đó giá trị của \[a\] bằng bao nhiêu? (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid18-1756113391.png)
Gọi \(O\) là tâm của hình vuông \(ABCD\).
Ta có \[\overrightarrow {{\rm{O}}A} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {O\,S} + \overrightarrow {SA} + \overrightarrow {OS} + \overrightarrow {SB} + \overrightarrow {OS} + \overrightarrow {SC} + \overrightarrow {OS} + \overrightarrow {SD} = \overrightarrow 0 \]
\[ \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = - 4\overrightarrow {OS} = 4\overrightarrow {SO} \Rightarrow \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} } \right| = \left| {4\overrightarrow {SO} } \right| = 4SO\].
Trọng lượng của vật nặng là \(P = mg = 3.10 = 30\,\left( N \right)\). Suy ra \(4\left| {\overrightarrow {SO} } \right| = P = 30\,\left( N \right) \Rightarrow SO = \frac{{15}}{2}\).
Lại có tam giác \(ASC\) vuông cân tại \(S\) nên
\(SO = SA.\sin \widehat {SAC} \Rightarrow SA = \frac{{SO}}{{\sin \widehat {SAC}}} = \frac{{\frac{{15}}{2}}}{{\sin 45^\circ }} = \frac{{15\sqrt 2 }}{2} = \frac{{30\sqrt 2 }}{4} \Rightarrow a = 30\).
Vậy \(a = 30\).
Trả lời: 30.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì BC2 = SB2 + SC2 nên DSBC vuông cân tại S.
Mặt khác SA = AC = SC = 2 Þ DSAC là tam giác đều.
Ta có \(\overrightarrow {SC} .\overrightarrow {AB} = \overrightarrow {SC} .\left( {\overrightarrow {SB} - \overrightarrow {SA} } \right) = \overrightarrow {SC} .\overrightarrow {SB} - \overrightarrow {SC} .\overrightarrow {SA} \)\( = 0 - \left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {SA} } \right|.\cos \widehat {ASC} = - 2.2.\cos 60^\circ = \frac{{ - {2^2}}}{2} = - 2\).
Vậy \(\overrightarrow {SC} .\overrightarrow {AB} = - 2\).
Trả lời: −2.
Lời giải

a) Ta có \(\overrightarrow {AA'} \) cùng phương với \(\overrightarrow {CM} \) và \(AA' = \frac{3}{2}CM\), suy ra \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) Do \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {A'C'} \), suy ra \(\left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AM} ,\overrightarrow {AC} } \right) = \widehat {CAM}\),
suy ra \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \cos \widehat {CAM} = \frac{{AC}}{{AM}} = \frac{{\sqrt 5 }}{3}\).
c) Ta có \(\overrightarrow {AM} = \overrightarrow {AC} + \overrightarrow {CM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} \).
d) Ta có \(\overrightarrow {B'D} = \overrightarrow {AD} - \overrightarrow {AB'} = \overrightarrow {AD} - \left( {\overrightarrow {AB} + \overrightarrow {AA'} } \right) = - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AA'} \).
Do đó \(\overrightarrow {AM} .\overrightarrow {B'D} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right).\left( { - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AA'} } \right)\)
\( = - A{B^2} + A{D^2} - \frac{2}{3}A{A'^2} = - 1 + 4 - 6 = - 3\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \).
B. \(\overrightarrow {SA} - \overrightarrow {SB} + \overrightarrow {SC} - \overrightarrow {SD} = \overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(30^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.