Câu hỏi:

25/08/2025 73 Lưu

Một chất điểm A nằm trên mặt phẳng nằm ngang (α), chịu tác động bởi ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \). Các lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) có giá nằm trong (α) và \(\left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) = 135^\circ \), còn lực \(\overrightarrow {{F_3}} \) có giá vuông góc với (α) và hướng lên trên. Xác định cường độ hợp lực của các lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)biết độ lớn của ba lực đó lần lượt là 20 N, 15 N và 10 N (làm tròn kết quả đến hàng phần mười).

Xác định cường độ hợp lực của các lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)biết độ lớn của ba lực đó lần lượt là 20 N, 15 N và 10 N (làm tròn kết quả đến hàng phần mười). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} \).

Khi đó \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right|\)\( \Rightarrow {\left| {\overrightarrow F } \right|^2} = {\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right|^2}\)

\( \Rightarrow {\left| {\overrightarrow F } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\left( {\overrightarrow {{F_1}} .\overrightarrow {{F_2}}  + \overrightarrow {{F_1}} .\overrightarrow {{F_3}}  + \overrightarrow {{F_3}} .\overrightarrow {{F_2}} } \right)\)

\[ \Rightarrow {\left| {\overrightarrow F } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\left( {\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) + \left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_3}} } \right|.\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_3}} } \right) + \left| {\overrightarrow {{F_3}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \left( {\overrightarrow {{F_3}} ,\overrightarrow {{F_2}} } \right)} \right)\]

\[ \Rightarrow {\left| {\overrightarrow F } \right|^2} = {20^2} + {15^2} + {10^2} + 2\left( {20.15.\cos 135^\circ  + 20.10.\cos 90^\circ  + 10.15.\cos 90^\circ } \right)\]

\( \Rightarrow \left| {\overrightarrow F } \right| \approx 17,3\) N.

Trả lời: 17,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian, cho tứ diện S.ABC có SA = SB = SC = AB = AC = 2, \(BC = 2\sqrt 2 \). Tính \(\overrightarrow {SC} .\overrightarrow {AB} \). (ảnh 1)

Vì BC2 = SB2 + SC2 nên DSBC vuông cân tại S.

Mặt khác SA = AC = SC = 2 Þ DSAC là tam giác đều.

Ta có \(\overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .\left( {\overrightarrow {SB}  - \overrightarrow {SA} } \right) = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA} \)\( = 0 - \left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {SA} } \right|.\cos \widehat {ASC} =  - 2.2.\cos 60^\circ  = \frac{{ - {2^2}}}{2} =  - 2\).

Vậy \(\overrightarrow {SC} .\overrightarrow {AB}  =  - 2\).

Trả lời: −2.

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, AD = 2, AA' = 3. Gọi M là một điểm trên đoạn CC' sao cho CM = 2MC'.  a) \(\overrightarrow {AA'}  = \frac{3}{2}\overrightarrow {CM} \). (ảnh 1)

a) Ta có \(\overrightarrow {AA'} \) cùng phương với \(\overrightarrow {CM} \) và \(AA' = \frac{3}{2}CM\), suy ra \(\overrightarrow {AA'}  = \frac{3}{2}\overrightarrow {CM} \).

b) Do \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {A'C'} \), suy ra \(\left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AM} ,\overrightarrow {AC} } \right) = \widehat {CAM}\),

suy ra \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \cos \widehat {CAM} = \frac{{AC}}{{AM}} = \frac{{\sqrt 5 }}{3}\).

c) Ta có \(\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {CM}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \frac{2}{3}\overrightarrow {AA'} \).

d) Ta có \(\overrightarrow {B'D}  = \overrightarrow {AD}  - \overrightarrow {AB'}  = \overrightarrow {AD}  - \left( {\overrightarrow {AB}  + \overrightarrow {AA'} } \right) =  - \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AA'} \).

Do đó \(\overrightarrow {AM} .\overrightarrow {B'D}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \frac{2}{3}\overrightarrow {AA'} } \right).\left( { - \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AA'} } \right)\)

\( =  - A{B^2} + A{D^2} - \frac{2}{3}A{A'^2} =  - 1 + 4 - 6 =  - 3\).

Đáp án: a) Đúng;  b) Sai;  c) Sai;  d) Sai.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP