PHẦN II. TRẢ LỜI NGẮN
Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân với điểm đặt S(0; 0; 4) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \(A\left( { - 2;0;0} \right),B\left( {1;\sqrt 3 ;0} \right),C\left( {1; - \sqrt 3 ;0} \right)\). Biết rằng trọng lực tác dụng lên chiếc máy có độ lớn 30 N và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) có độ lớn bằng nhau như hình. Tính tích vô hướng của \(\overrightarrow {{F_1}} .\overrightarrow {{F_2}} \).
PHẦN II. TRẢ LỜI NGẮN
Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân với điểm đặt S(0; 0; 4) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \(A\left( { - 2;0;0} \right),B\left( {1;\sqrt 3 ;0} \right),C\left( {1; - \sqrt 3 ;0} \right)\). Biết rằng trọng lực tác dụng lên chiếc máy có độ lớn 30 N và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) có độ lớn bằng nhau như hình. Tính tích vô hướng của \(\overrightarrow {{F_1}} .\overrightarrow {{F_2}} \).

Quảng cáo
Trả lời:

Ta có \(\overrightarrow {SA} = \left( { - 2;0; - 4} \right),\overrightarrow {SB} = \left( {1;\sqrt 3 ; - 4} \right),\overrightarrow {SC} = \left( {1; - \sqrt 3 ; - 4} \right)\) \( \Rightarrow SA = SB = SC = \sqrt {20} \).
Lại có \(\overrightarrow {AB} = \left( {3;\sqrt 3 ;0} \right),\overrightarrow {AC} = \left( {3; - \sqrt 3 ;0} \right),\overrightarrow {BC} = \left( {0; - 2\sqrt 3 ;0} \right)\) \( \Rightarrow AB = AC = BC = \sqrt {12} \).
Do đó hình chóp S.ABC đều có đường cao là SO = 4 với O(0; 0; 0) là trọng tâm tam giác ABC.
Mặt khác, \(\overrightarrow {{F_1}} = k\overrightarrow {SA} = \left( { - 2k;0; - 4k} \right),\overrightarrow {{F_2}} = k\overrightarrow {SB} = \left( {k;\sqrt 3 k; - 4k} \right),\overrightarrow {{F_3}} = k\overrightarrow {SC} = \left( {k; - \sqrt 3 k; - 4k} \right)\)
\( \Rightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \left( {0;0; - 12k} \right)\).
Mà \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P = \left( {0;0; - 30} \right)\) nên \( - 12k = - 30 \Leftrightarrow k = \frac{5}{2}\).
Suy ra \(\overrightarrow {{F_1}} = \left( { - 5;0; - 10} \right),\overrightarrow {{F_2}} = \left( {\frac{5}{2};\frac{{5\sqrt 3 }}{2}; - 10} \right)\).
Vậy \(\overrightarrow {{F_1}} .\overrightarrow {{F_2}} = \frac{{175}}{2} = 87,5\).
Trả lời: 87,5.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi M(a; 0; 0) (a > 0) là điểm thuộc tia Ox.
Ta có \(\overrightarrow {AM} = \left( {a - 1; - 2;0} \right),\overrightarrow {BM} = \left( {a + 1;0; - 3} \right)\).
Để tam giác ABM vuông tại M thì \(\overrightarrow {AM} .\overrightarrow {BM} = 0\)\( \Leftrightarrow \left( {a - 1} \right)\left( {a + 1} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - 1\end{array} \right.\).
Vì a > 0 nên M(1; 0; 0).
Lời giải
\(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {BA} + \overrightarrow {MC} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MC} = \overrightarrow {AB} \). Gọi M(x; y; z)
Ta có \(\overrightarrow {AB} = \left( { - 1;3;0} \right)\), \(\overrightarrow {MC} = \left( {2 - x;1 - y;3 - z} \right)\).
Vì \(\overrightarrow {MC} = \overrightarrow {AB} \) nên \(\left\{ \begin{array}{l}2 - x = - 1\\1 - y = 3\\3 - z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - 2\\z = 3\end{array} \right.\) Þ M(3; −2; 3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.