Câu hỏi:

04/09/2025 25 Lưu

Cho cấp số nhân \[\left( {{u_n}} \right)\]\[{u_1} = 4;\,\,{u_2} = 8\]. Tìm công bội \[q\] của cấp số nhân.     

A. \[q = 12\].                     
B. \[q = 4\].                       
C. \[q = 2\].                                          
D. \[q = \frac{1}{2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[{u_2} = {u_1} \cdot q \Rightarrow q = \frac{{{u_2}}}{{{u_1}}} = 2.\] Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{{3\pi }}{4}\].     
B. \[ - \frac{\pi }{4}\].       
C. \[\frac{\pi }{4}\].                                     
D. \[ - \frac{{3\pi }}{4}\].

Lời giải

Ta có \( - \frac{\pi }{4} = \frac{{7\pi }}{4} - 2\pi \). Chọn B.

Lời giải

a) Sai. Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right) \cdot \frac{1}{2} = 1 + \frac{n}{2}\) với mọi \(n \ge 1\).

b) Đúng. Xét \(5 = 1 + \frac{n}{2} \Rightarrow n = 8 \in {\mathbb{N}^*}\); suy ra 5 là số hạng thứ 8 của cấp số cộng đã cho.

c) Sai. Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin {\mathbb{N}^*};\) suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.

d) Sai. Tổng 100 số hạng đầu của cấp số cộng là: \({S_{100}} = \frac{{100\left[ {2 \cdot \frac{3}{2} + \left( {100 - 1} \right) \cdot \frac{1}{2}} \right]}}{2} = 2625.\)

Câu 3

A. \[1\].                              
B. \[3\].                              
C. \[2\].                                       
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{1}{2};\frac{1}{4};\frac{1}{8}.\)                 
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}.\)                      
C. \(\frac{1}{2};\frac{1}{4};\frac{1}{{16}}.\)                      
D. \(\frac{1}{2};\frac{2}{3};\frac{3}{4}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P = \frac{1}{2}.\)       
B. \(P = \frac{1}{4}.\)       
C. \(P = \frac{1}{6}.\)                          
D. \(P = \frac{1}{8}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\mathbb{R}\backslash \left\{ {k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                  
B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                                
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                                
D. \(\mathbb{R}\backslash \left\{ {k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP