Câu hỏi:

12/09/2025 9 Lưu

Cho tam giác \(ABC\)\(BC = a,\,\,AC = b,\,AB = c\). Gọi \(p\) là nửa chu vi, \(R\) là bán kính đường tròn ngoại tiếp, \(r\) là bán kính đường tròn nội tiếp và \(S\) là diện tích tam giác. Mệnh đề nào sau đây sai?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Các công thức A, B, C đúng theo công thức diện tích tam giác

Công thức D sai, sửa lại thành: \(S = \frac{{abc}}{{{\rm{4R}}}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(\sin \alpha = \frac{1}{3} > 0\).

Do \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\). Vậy giá trị \(\sin \alpha \cdot \cos \alpha < 0\).

b) Đúng. \(\cos \alpha < 0\), \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), suy ra \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\).

c) Sai. Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{1}{{2\sqrt 2 }} = - \frac{{\sqrt 2 }}{4}\).

d) Đúng. Ta có \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{\sqrt 2 }}{4}}} = - 2\sqrt 2 .\)

Vậy \[\frac{{6\sin \alpha + 3\sqrt 2 \cos \alpha }}{{2\sqrt 2 \tan \alpha + \sqrt 2 \cot \alpha }} = \frac{{6 \cdot \frac{1}{3} + 3\sqrt 2 \cdot \left( { - \frac{{2\sqrt 2 }}{3}} \right)}}{{2\sqrt 2 \cdot \left( { - \frac{{\sqrt 2 }}{4}} \right) + \sqrt 2 \cdot \left( { - 2\sqrt 2 } \right)}} = \frac{2}{5}\].

Lời giải

a) Đúng. Mệnh đề đảo của mệnh đề “\(P \Rightarrow Q\) là mệnh đề\(Q \Rightarrow P\)” và được phát biểu là: “Nếu \(ABCD\) là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác \(ABCD\) là hình vuông”.

b) Sai. Hai mệnh đề \(P\)\(Q\) tương đương với nhau.

c) Sai. Mệnh đề \(P \Leftrightarrow Q\) là mệnh đề đúng.

d) Đúng.\(P\)\(Q\) tương đương nên \(P\) là điều kiện cần và đủ để có \(Q\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP