Câu hỏi:

12/09/2025 4 Lưu

Cho tam giác\[ABC\]\(\widehat C\) nhọn và \[AC = 3;BC = 4;{S_{ABC}} = 3\sqrt 3 \] (tham khảo hình vẽ).

Tính độ dài cạnh\[AB\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[{S_{ABC}} = \frac{1}{2}AC \cdot BC \cdot \sin C\]\[ = \frac{1}{2} \cdot 3 \cdot 4\sin C\]\[ = 3\sqrt 3 \]\[ \Rightarrow \sin C = \frac{{\sqrt 3 }}{2}\]\[ \Rightarrow \widehat C = 60^\circ \] (Do góc \(\widehat C\) nhọn).

 Áp dụng định lý côsin trong tam giác\[ABC\] ta có:

\(A{B^2} = B{C^2} + A{C^2} - 2 \cdot BC \cdot AC \cdot \cos C\)\( = {3^2} + {4^2} - 2 \cdot 3 \cdot 4 \cdot \cos 60^\circ \)\( = {3^2} + {4^2} - 2 \cdot 3 \cdot 4 \cdot \frac{1}{2} = 13\).

Suy ra \(AB = \sqrt {13} \). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \({\sin ^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha = 1 \Rightarrow {\sin ^2}\alpha = 1 - c{\rm{o}}{{\rm{s}}^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\).

Vậy \(P = \frac{8}{9} + 3 \cdot {\left( {\frac{1}{3}} \right)^2} = \frac{{11}}{9}\). Chọn D.

Lời giải

Do \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = 2 \Rightarrow \sin \alpha \ne 0\).

Chia cả tử và mẫu của biểu thức \(P\) cho \(\sin \alpha \), ta có:

P=3+4cosαsinα2cosαsinα=3+4cotα2cotα=221122a=22;b=11.

Vậy \(a + 2b = - 22 + 2 \cdot 11 = 0\).

Đáp án: 0.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP