Câu hỏi:

13/09/2025 98 Lưu

Cặp số \(\left( {x;y} \right)\) nào dưới đây là một nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y > 2}\\{ - 2x + y \le 7}\end{array}} \right.\)?

A. \(\left( { - 1;12} \right)\). 
B. \(\left( { - 5; - 2} \right)\).         
C. \(\left( {2; - 5} \right)\).  
D. \(\left( {4; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

- Xét cặp số \(\left( { - 1;12} \right)\), ta thấy không thỏa hệ \(\left\{ {\begin{array}{*{20}{c}}{x + y > 2}\\{ - 2x + y \le 7}\end{array}} \right.\).

- Xét cặp số \(\left( { - 5; - 2} \right)\), ta thấy không thỏa hệ \(\left\{ {\begin{array}{*{20}{c}}{x + y > 2}\\{ - 2x + y \le 7}\end{array}} \right.\).

- Xét cặp số \(\left( {2; - 5} \right)\), ta thấy không thỏa hệ \(\left\{ {\begin{array}{*{20}{c}}{x + y > 2}\\{ - 2x + y \le 7}\end{array}} \right.\).

- Xét cặp số \(\left( {4; - 1} \right)\), ta thấy thỏa hệ \(\left\{ {\begin{array}{*{20}{c}}{x + y > 2}\\{ - 2x + y \le 7}\end{array}} \right.\).

Chọn D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dùng công thức Heron ta tính được diện tích của tam giác là \({S_1} = \frac{{3\sqrt {91} }}{4}\) (m2).

Ta có \({S_1} = pr\) nên ta tính được bán kính đường tròn nội tiếp tam giác là \(r = \frac{{3\sqrt {91} }}{{26}}\) (m).

Tính được diện tích hình tròn là \({S_2} = \pi {r^2} = \frac{{63\pi }}{{52}}\) (m2).

Diện tích cần sơn là \(S = {S_1} - {S_2} = \frac{{3\sqrt {91} }}{4} - \frac{{63}}{{52}}\pi  \approx 3,348\) (m2).

Số tiền cần bỏ ra bằng \(S \cdot 250 \approx 837\) nghìn đồng.

Lời giải

Gọi x là số học sinh giải được cả 3 bài toán.

       a là số học sinh chỉ làm được bài toán thứ nhất và thứ ba.

       b là số học sinh chỉ làm được bài toán thứ nhất và thứ hai.

Khi đó:

       Số học sinh chỉ làm được bài toán thứ ba là: 15 – a – x – 3 = 12 – x – a (học sinh).

       Số học sinh chỉ làm được bài toán thứ hai là: 14 – b – x – 3 = 11 – x – b (học sinh).

Theo đề ta có phương trình: x + a + b + 3 + 12 + 12 – x – a + 11 – x – b = 35. Do đó x = 3.

Vậy có 3 học sinh giải được cả 3 bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP