Câu hỏi:

13/09/2025 21 Lưu

Cho mệnh đề \(P\): “Tam giác \(ABC\) vuông tại \(A\)” và mệnh đề \(Q:\) “Tam giác \(ABC\)\(AB{}^2 + A{C^2} = B{C^2}\)”. Xét mệnh đề kéo theo \(P \Rightarrow Q\).

a) Mệnh đề \(P \Rightarrow Q\) được phát biểu là: “Nếu tam giác \(ABC\) vuông tại \(A\) thì tam giác \(ABC\)\(AB{}^2 + A{C^2} = B{C^2}\)”.

b) \(P\) là điều kiện cần để có \(Q\).

c) Mệnh đề \(P \Rightarrow Q\) là mệnh đề đúng.

d) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Mệnh đề \(P \Rightarrow Q\) được phát biểu là: “Nếu tam giác \(ABC\) vuông tại \(A\) thì tam giác \(ABC\)\(AB{}^2 + A{C^2} = B{C^2}\)”.

b) Sai. \(P\) là điều kiện đủ để có \(Q\).

c) Đúng. Mệnh đề \(P \Rightarrow Q\) là mệnh đề đúng (định lý Pythagore).

d) Sai. Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề: “Nếu tam giác \(ABC\)\(AB{}^2 + A{C^2} = B{C^2}\) thì tam giác \(ABC\) vuông tại \(A\)” là mệnh đề đúng (định lý Pythagore đảo).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số học sinh giải được cả 3 bài toán.

       a là số học sinh chỉ làm được bài toán thứ nhất và thứ ba.

       b là số học sinh chỉ làm được bài toán thứ nhất và thứ hai.

Khi đó:

       Số học sinh chỉ làm được bài toán thứ ba là: 15 – a – x – 3 = 12 – x – a (học sinh).

       Số học sinh chỉ làm được bài toán thứ hai là: 14 – b – x – 3 = 11 – x – b (học sinh).

Theo đề ta có phương trình: x + a + b + 3 + 12 + 12 – x – a + 11 – x – b = 35. Do đó x = 3.

Vậy có 3 học sinh giải được cả 3 bài toán.

Lời giải

Gọi số bộ sản phẩm loại \[I\] sản xuất trong một ngày là \[x\,\,,\,\,\,\left( {x \ge 0,x \in \mathbb{N}} \right)\].

Số bộ sản phẩm loại \[II\] sản xuất trong một ngày là \[y\,\,,\,\,\,\left( {y \ge 0,y \in \mathbb{N}} \right)\].

Số lãi thu được là \[L = 5x + 4y\] (triệu đồng).

Số giờ làm việc của máy là \[3x + 3y\] (giờ).

Số giờ làm việc của công nhân là \[2x + y\] (giờ).

Theo giả thiết: Một ngày máy làm việc không quá \[15\] giờ, nhân công làm việc không quá \[8\] giờ nên ta có hệ bất phương trình \[\left\{ \begin{array}{l}3x + 3y \le 15\\2x + y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\].

Miền nghiệm của hệ bất phương trình trên là

Một xưởng sản xuất đồ gỗ mỹ nghệ sản suất ra hai bộ sản phẩm loại I và loại II (ảnh 1)

Tính các giá trị của biểu thức \[L = 5x + 4y\] tại các đỉnh của tứ giác là miền nghiệm của hệ bất phương trình trên ta được

\[\left( {x;y} \right) = \left( {0;0} \right) \Rightarrow L = 0\];

\[\left( {x;y} \right) = \left( {4;0} \right) \Rightarrow L = 20\];

\[\left( {x;y} \right) = \left( {3;2} \right) \Rightarrow L = 23\];

\[\left( {x;y} \right) = \left( {0;5} \right) \Rightarrow L = 20\].

Vậy số tiền lãi lớn nhất xưởng đó đạt được trong một ngày là \[23\] triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP