Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
A. \(2x - 3y - 6z < 0\).
B. \(x - xy + 1 \ge 0\).
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt \(\overrightarrow F = \overrightarrow {AN} ,\overrightarrow {{F_1}} = \overrightarrow {AP} ,\overrightarrow {{F_2}} = \overrightarrow {AM} \).
Khi đó AMNP là hình bình hành mà \(AM \bot AP\) nên AMNP là hình chữ nhật.
Ta có AN = 50; \(AM = AN.\cos 30^\circ = 50.\frac{{\sqrt 3 }}{2} = 25\sqrt 3 \); \(AP = MN = \sqrt {A{N^2} - A{M^2}} = 25\).
Lực \(\overrightarrow {{F_2}} \) có độ lớn \({F_2} = 25\sqrt 3 \)N và tạo với phương dịch chuyển góc 0° nên công sinh ra là \(A = {F_2}.AB.\cos 0^\circ = 25\sqrt 3 .200.1 = 5000\sqrt 3 \) J.
Lời giải
Gọi N là trung điểm của BC.
Ta có \(\overrightarrow {GM} = \frac{1}{2}\left( {\overrightarrow {GA} + \overrightarrow {GD} } \right)\)\( = \frac{1}{2}\overrightarrow {GA} + \frac{1}{2}\overrightarrow {GD} \)\( = - \frac{1}{2}.\frac{2}{3}\overrightarrow {AN} + \frac{1}{2}.\frac{2}{3}\overrightarrow {BD} \)\( = - \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)\( = \frac{1}{6}\overrightarrow {BA} - \frac{1}{6}\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)\( = \frac{1}{6}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BA} - \frac{1}{6}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)
\( = \frac{2}{3}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BC} \).
Suy ra \(m = 2;n = 1\). Do đó \(m + n = 3\).
Trả lời: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\overrightarrow {BI} = \frac{1}{3}\overrightarrow {BA} - \frac{2}{3}\overrightarrow {BC} \).
B. \(\overrightarrow {BI} = \frac{2}{3}\overrightarrow {BA} - \frac{1}{3}\overrightarrow {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left\{ 0 \right\} \subset A\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
