Câu hỏi:

02/10/2025 71 Lưu

Những căn lều gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\) như trong Hình 2. Với hệ trục toạ độ \[Oxyz\] thể hiện như Hình 2 (đơn vị đo lấy theo centimét), hai điểm \(A'\) và \(B'\) có tọa độ lần lượt là \(\left( {240;450;0} \right)\) và \(\left( {120;450;300} \right)\). Mỗi căn nhà gỗ có chiều dài là \(a{\rm{ cm}}\), chiều rộng là \(b\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là \(c\;{\rm{cm}}\). Tính \(a + b + c\) (Làm tròn đến hàng đơn vị).
Những căn lều gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\) như trong Hình 2. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì điểm \(A'\) có toạ độ là \(\left( {240;450;0} \right)\) nên khoảng cách từ \(A'\) đến các trục \(Ox,Oy\) lần lượt là \(450\;{\rm{cm}}\) và \(240\;{\rm{cm}}\). Suy ra \(A'A = 450\;{\rm{cm}}\) và \(A'O' = 240\;{\rm{cm}}\). Từ giả thiết suy ra \(\overrightarrow {A'B'}  = \left( { - 120;0;300} \right)\), do đó \(A'B' = \left| {\overrightarrow {A'B'} } \right| = \sqrt {{{( - 120)}^2} + {0^2} + {{300}^2}}  = 60\sqrt {29}  \approx 323(\;{\rm{cm}})\).

Vi \(O'O = A'A = 450\;{\rm{cm}}\) và \(O'\) nằm trên trục \[Oy\] nên toạ độ của điểm \(O'\) là \(\left( {0;450;0} \right)\).

Do đó \(\overline {O'B'}  = \left( {120;0;300} \right)\) và \(O'B' = \left| {\overline {O'B'} } \right| = \sqrt {{{120}^2} + {0^2} + {{300}^2}}  = 60\sqrt {29}  \approx 323{\rm{ }}({\rm{cm}})\).

Vậy mỗi căn lều gỗ có chiều dài là \(450\;{\rm{cm}}\), chiều rộng là \(240\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là 323 cm.

\( \Rightarrow a + b + c = 1013\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện \(ABCD\). Gọi \(M,N,G\) lần lượt là trung điểm của \(AB\), \(CD\), \(MN\). (ảnh 1)

a) Đúng: Do \(M\) là trung điểm của đoạn \(AB\) nên \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).

b) Đúng: Do \(N\) là trung điểm của \(CD\) nên \(\overrightarrow {MC} + \overrightarrow {MD}  = 2\overrightarrow {MN} \).

c) Sai: Do \(G\) là trung điểm của \(MN\) nên \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).

\(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} \), \(\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \)\( \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \)

\( \Rightarrow \)\[\overrightarrow {GA} + \overrightarrow {GB} = - \left( {\overrightarrow {GC} + \overrightarrow {GD} } \right)\].

d) Sai: Do AD+BC=AM+MN+ND+BM+MN+NC

\( = \left( {\overrightarrow {AM} + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) + 2\overrightarrow {MN} = 2\overrightarrow {MN} \)

Lời giải

Chọn C

Ta có: \[D\left( {a;\,b;\,c} \right)\], \[ABCD\] là hình bình hành thì

\(\overrightarrow {AD}  = \overrightarrow {BC}  \Rightarrow \left\{ \begin{array}{l}a - 1 =  - 2 - 2\\b - 2 = 3 + 1\\c + 1 = 3 - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b = 6\\c =  - 1\end{array} \right.\).

Vậy: \(D( - 3;6; - 1) \Rightarrow P = 44\)

Câu 6

A. \(D\left( { - 1;\,4;\,2} \right)\).         
B. \(D\left( {1; - \,4; - \,2} \right)\).                 
C. \(D\left( {1;\,4;\,2} \right)\).       
D. \(D\left( { - 1; - \,4;\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP