Câu hỏi:

07/10/2025 91 Lưu

Tính thể tích chứa được của một cái chậu inox to mà khách hàng đặt theo kích thước yêu cầu, biết phần trong của nó có dạng khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đường \[y = \sqrt x + 1\], trục \[Ox\] và các đường thẳng \[x = 0,\,\,x = 2\] quanh trục \[Ox\], đơn vị trên trục là decimet (làm tròn kết quả đến hàng phần trăm).
Chọn D Thể tích của chậu inox là: \[V = \pi \int\limits_0^2 {{{\left( {\sqrt x  + 1} \right)}^2}} {\rm{d}}x = \pi \left( {\frac{8}{3}\sqrt 2  + 4} \right) \approx 24,41\] (\[{\rm{d}}{{\rm{m}}^3}\]). (ảnh 1)

A. 12,12\[{\rm{d}}{{\rm{m}}^3}\].                     
B. 12,21 \[{\rm{d}}{{\rm{m}}^3}\].                                   
C. 24,14 \[{\rm{d}}{{\rm{m}}^3}\].                                   
D. 24,41 \[{\rm{d}}{{\rm{m}}^3}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Thể tích của chậu inox là: \[V = \pi \int\limits_0^2 {{{\left( {\sqrt x  + 1} \right)}^2}} {\rm{d}}x = \pi \left( {\frac{8}{3}\sqrt 2  + 4} \right) \approx 24,41\] (\[{\rm{d}}{{\rm{m}}^3}\]).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Dựa vào đồ thị trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\).

Ta có quãng đường mà vật di chuyển được trong 1 giây đầu tiên là \(s = \int\limits_0^1 {2t{\rm{d}}t}  = {t^2}\mathop |\nolimits_0^1  = 1\left( {\rm{m}} \right)\).

b) Dựa vào đồ thị ta thấy: Trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\), khoảng thời gian từ 1 giây đến 2 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2\left( {{\rm{m/s}}} \right)\).

Ta có quãng đường mà vật di chuyển được trong 2 giây đầu tiên là:

\(s = \int\limits_0^1 {2t{\rm{d}}t}  + \int\limits_1^2 {2{\rm{dt}}}  = {t^2}\mathop |\nolimits_0^1  + 2t\mathop |\nolimits_1^2  = 3\left( {\rm{m}} \right)\).

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y =  - \frac{{{x^2}}}{3}\),\(x =  - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x}  - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.

Câu 4

A. \[2\tan x + 2\cot x + C\].                                                                        
B. \[\frac{1}{3}{\tan ^3}x + \frac{1}{3}{\cot ^3}x + C\].
C. \[\tan x + \cot x - 2x + C\].                                                                        
D. \[\tan x - \cot x - 2x + C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP