Câu hỏi:

07/10/2025 119 Lưu

Một ô tô đang chạy với vận tốc \(18\,\,\left( {{\rm{m/s}}} \right)\) thì người lái hãm phanh. Sau khi hãm phanh ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = 18 - 36t\,\,\left( {{\rm{m/s}}} \right)\], trong đó \(t\) là khoảng thời gian được tính bằng giây kể từ lúc ô tô bắt đầu hãm phanh.

a) Thời gian kể từ lúc hãm phanh đến lúc xe dừng hẳn là \(1,5\) giây.

b) Quãng đường xe đi được sau \(0,3\) giây kể từ lúc hãm phanh là \(3\) mét.

c) Quãng đường kể từ lúc hãm phanh đến lúc xe dừng hẳn là \(4,5\) mét.

d) Gia tốc tức thời của chuyển động này là \(36\,\,\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Lúc hãm phanh thì \(v\left( {{t_1}} \right) = 0 \Rightarrow \)\[18 - 36{t_1} = 0 \Rightarrow {t_1} = 0,5\] giây.

b) Sai. Quãng đường xe đi được sau \(0,3\) giây kể từ lúc hãm phanh là

\(s = \int\limits_0^{0,3} {\left( {18 - 36t} \right)} {\rm{dt}}\)\[ = \left. {\left( {18t - 18{t^2}} \right)} \right|_0^{0,3} = 3,78\].

c) Đúng. Với \({t_1} = 0,5\) giây thì quãng đường kể từ lúc hãm phanh đến lúc xe dừng hẳn là

\({s_1} = \int\limits_0^{0,5} {\left( {18 - 36t} \right)} {\rm{dt}}\)\[ = \left. {\left( {18t - 18{t^2}} \right)} \right|_0^{0,5} = 4,5\].

d) Sai. Gia tốc tức thời của chuyển động này là \(a = v'\left( t \right) =  - 36\,\,\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Dựa vào đồ thị trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\).

Ta có quãng đường mà vật di chuyển được trong 1 giây đầu tiên là \(s = \int\limits_0^1 {2t{\rm{d}}t}  = {t^2}\mathop |\nolimits_0^1  = 1\left( {\rm{m}} \right)\).

b) Dựa vào đồ thị ta thấy: Trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\), khoảng thời gian từ 1 giây đến 2 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2\left( {{\rm{m/s}}} \right)\).

Ta có quãng đường mà vật di chuyển được trong 2 giây đầu tiên là:

\(s = \int\limits_0^1 {2t{\rm{d}}t}  + \int\limits_1^2 {2{\rm{dt}}}  = {t^2}\mathop |\nolimits_0^1  + 2t\mathop |\nolimits_1^2  = 3\left( {\rm{m}} \right)\).

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y =  - \frac{{{x^2}}}{3}\),\(x =  - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x}  - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.

Câu 4

A. \[2\tan x + 2\cot x + C\].                                                                        
B. \[\frac{1}{3}{\tan ^3}x + \frac{1}{3}{\cot ^3}x + C\].
C. \[\tan x + \cot x - 2x + C\].                                                                        
D. \[\tan x - \cot x - 2x + C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP