Câu hỏi:

07/10/2025 2,418 Lưu

Một ô tô đang chạy với vận tốc \(18\,\,\left( {{\rm{m/s}}} \right)\) thì người lái hãm phanh. Sau khi hãm phanh ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = 18 - 36t\,\,\left( {{\rm{m/s}}} \right)\], trong đó \(t\) là khoảng thời gian được tính bằng giây kể từ lúc ô tô bắt đầu hãm phanh.

a) Thời gian kể từ lúc hãm phanh đến lúc xe dừng hẳn là \(1,5\) giây.

b) Quãng đường xe đi được sau \(0,3\) giây kể từ lúc hãm phanh là \(3\) mét.

c) Quãng đường kể từ lúc hãm phanh đến lúc xe dừng hẳn là \(4,5\) mét.

d) Gia tốc tức thời của chuyển động này là \(36\,\,\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Lúc hãm phanh thì \(v\left( {{t_1}} \right) = 0 \Rightarrow \)\[18 - 36{t_1} = 0 \Rightarrow {t_1} = 0,5\] giây.

b) Sai. Quãng đường xe đi được sau \(0,3\) giây kể từ lúc hãm phanh là

\(s = \int\limits_0^{0,3} {\left( {18 - 36t} \right)} {\rm{dt}}\)\[ = \left. {\left( {18t - 18{t^2}} \right)} \right|_0^{0,3} = 3,78\].

c) Đúng. Với \({t_1} = 0,5\) giây thì quãng đường kể từ lúc hãm phanh đến lúc xe dừng hẳn là

\({s_1} = \int\limits_0^{0,5} {\left( {18 - 36t} \right)} {\rm{dt}}\)\[ = \left. {\left( {18t - 18{t^2}} \right)} \right|_0^{0,5} = 4,5\].

d) Sai. Gia tốc tức thời của chuyển động này là \(a = v'\left( t \right) =  - 36\,\,\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y =  - \frac{{{x^2}}}{3}\),\(x =  - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x}  - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.

Lời giải

a) Sai. Dựa vào đồ thị \(v\left( t \right)\).

b) Đúng. Trong \(3\) giây đầu tiên, vận tốc của chuyển động là \(v\left( t \right) = 11\,\left( {{\rm{m/s}}} \right)\).

Do đó quãng đường chất điểm chuyển động trong \(3\)giây đầu tiên là: \({S_1} = \int\limits_0^3 {11{\rm{d}}t} \,\,\left( {\rm{m}} \right)\).

c) Đúng. Trong khoảng thời gian từ \(8\) đến \(15\) giây, đồ thị \(v\left( t \right)\) là một đường thẳng đi qua hai điểm \(\left( {8;21} \right)\) và \(\left( {15;0} \right)\). Ta có: \(v\left( t \right) = at + b\).

Từ giả thiết ta có hệ: \(\left\{ {\begin{array}{*{20}{c}}{8a + b = 21}\\{15a + b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 3}\\{b = 45}\end{array}} \right.\).

Do đó \(v\left( t \right) =  - 3t + 45\,\,\left( {8 \le t \le 15} \right)\).

Quãng đường chất điểm đi được trong khoảng thời gian này là:

\({S_2} = \int\limits_8^{15} {\left( { - 3t + 45} \right){\rm{d}}t}  =  - \frac{{3{t^2}}}{2}\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. + 45t\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. = \frac{{147}}{2} = 73,5\,\left( {\rm{m}} \right)\).

d) Sai. Trong khoảng thời gian từ \(3\) đến \(8\) giây đồ thị \(v\left( t \right)\) là một Parabol đi qua các điểm có tọa độ lần lượt là  \(\left( {3;11} \right),\left( {5;3} \right),\left( {8;21} \right)\) có phương trình dạng: \(v\left( t \right) = a{t^2} + bt + c\).

Từ giả thiết ta có: \(\left\{ {\begin{array}{*{20}{c}}{9a + 3b + c = 11}\\{25a + 5b + c = 3}\\{64a + 8b + c = 21}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b =  - 20}\\{c = 53}\end{array}} \right.\)

Do đó: \(v\left( t \right) = 2{t^2} - 20t + 53\,\,\left( {3 \le t \le 8} \right)\).

Quãng đường chất điểm đi được trong khoảng thời gian này là:

\[{S_3} = \int\limits_3^8 {v\left( t \right){\rm{d}}t}  = \int\limits_3^8 {\left( {2{t^2} - 20t + 53} \right){\rm{d}}t = \,\,} \left( {\frac{{2{t^3}}}{3} - 10{t^2} + 53t} \right)\left| {\begin{array}{*{20}{c}}8\\3\end{array}} \right. = \frac{{115}}{3}\,\,\,\left( {\rm{m}} \right)\].

Vận tốc trung bình của chất điểm trong khoảng thời gian này là: \({v_{tb}} = \frac{{{S_3}}}{5} = \frac{{23}}{3} \approx 7,67\,\left( {{\rm{m/s}}} \right)\).