Cho một viên gạch men có dạng hình vuông \(OABC\) như hình vẽ. Sau khi tọa độ hóa, ta có \(O\left( {0\,;\,0} \right)\), \(A\left( {0\,;\,1} \right)\), \(B\left( {1\,;\,1} \right)\), \(C\left( {1\,;\,0} \right)\) và hai đường cong lần lượt là đồ thị hàm số \(y = {x^3}\) và \(y = \sqrt[3]{x}.\)

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng\(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|} \,{\rm{d}}x\).
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\),đường thẳng \(x = 0\) và đường thẳng \(x = 1\) có giá trị bằng \(\frac{3}{4}\)(đvdt).
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\) và \(y = \sqrt[3]{x}\), đường thẳng\(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \[S = \int\limits_0^1 {\left( {{x^3} - \sqrt[3]{x}} \right){\rm{d}}x} \].
d) Diện tích phần không được tô đậm trên viên gạch men có giá trị bằng \(\frac{1}{2}\)(đvdt).
Cho một viên gạch men có dạng hình vuông \(OABC\) như hình vẽ. Sau khi tọa độ hóa, ta có \(O\left( {0\,;\,0} \right)\), \(A\left( {0\,;\,1} \right)\), \(B\left( {1\,;\,1} \right)\), \(C\left( {1\,;\,0} \right)\) và hai đường cong lần lượt là đồ thị hàm số \(y = {x^3}\) và \(y = \sqrt[3]{x}.\)

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng\(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|} \,{\rm{d}}x\).
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\),đường thẳng \(x = 0\) và đường thẳng \(x = 1\) có giá trị bằng \(\frac{3}{4}\)(đvdt).
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\) và \(y = \sqrt[3]{x}\), đường thẳng\(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \[S = \int\limits_0^1 {\left( {{x^3} - \sqrt[3]{x}} \right){\rm{d}}x} \].
d) Diện tích phần không được tô đậm trên viên gạch men có giá trị bằng \(\frac{1}{2}\)(đvdt).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Kết nối tri thức Chương 4 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục \(Ox\), đường thẳng \(x = a,x = b\) được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|\,{\rm{d}}x} \).
b) Sai. Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\).
Ta có \(S = \int\limits_0^1 {\left| {{x^3}} \right|{\rm{d}}x} = \frac{{{x^4}}}{4}\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{4}\)(đvdt).
c) Sai. Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\), đường thẳng\(x = a\) và đường thẳng \(x = b\) được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|{\rm{d}}x} \), vì phần đồ thị của hàm số \(y = {x^3}\) nằm dưới phần đồ thị của hàm số \(y = \sqrt[3]{x}\), nên diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\) và \(y = \sqrt[3]{x}\), đường thẳng\(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left( { - {x^3} + \sqrt[3]{x}} \right){\rm{d}}x} \).
d) Đúng. Diện tích hình vuông có cạnh bằng \(1\) là \(S = {1^2} = 1\)(đvdt).
Gọi \({S_1}\) là diện tích phần tô đậm: \[{S_1} = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)\,} {\rm{d}}x = \int\limits_0^1 {\left( {{x^{\frac{1}{3}}} - {x^3}} \right)} {\rm{d}}x = \left( {\frac{3}{4}{x^{\frac{4}{3}}} - \frac{{{x^4}}}{4}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{2}\](đvdt),
Vậy diện tích phần không được tô đậm trên viên gạch men bằng \(S - {S_1} = 1 - \frac{1}{2} = \frac{1}{2}\)(đvdt).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Lời giải
a) Sai. Dựa vào đồ thị \(v\left( t \right)\).
b) Đúng. Trong \(3\) giây đầu tiên, vận tốc của chuyển động là \(v\left( t \right) = 11\,\left( {{\rm{m/s}}} \right)\).
Do đó quãng đường chất điểm chuyển động trong \(3\)giây đầu tiên là: \({S_1} = \int\limits_0^3 {11{\rm{d}}t} \,\,\left( {\rm{m}} \right)\).
c) Đúng. Trong khoảng thời gian từ \(8\) đến \(15\) giây, đồ thị \(v\left( t \right)\) là một đường thẳng đi qua hai điểm \(\left( {8;21} \right)\) và \(\left( {15;0} \right)\). Ta có: \(v\left( t \right) = at + b\).
Từ giả thiết ta có hệ: \(\left\{ {\begin{array}{*{20}{c}}{8a + b = 21}\\{15a + b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{b = 45}\end{array}} \right.\).
Do đó \(v\left( t \right) = - 3t + 45\,\,\left( {8 \le t \le 15} \right)\).
Quãng đường chất điểm đi được trong khoảng thời gian này là:
\({S_2} = \int\limits_8^{15} {\left( { - 3t + 45} \right){\rm{d}}t} = - \frac{{3{t^2}}}{2}\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. + 45t\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. = \frac{{147}}{2} = 73,5\,\left( {\rm{m}} \right)\).
d) Sai. Trong khoảng thời gian từ \(3\) đến \(8\) giây đồ thị \(v\left( t \right)\) là một Parabol đi qua các điểm có tọa độ lần lượt là \(\left( {3;11} \right),\left( {5;3} \right),\left( {8;21} \right)\) có phương trình dạng: \(v\left( t \right) = a{t^2} + bt + c\).
Từ giả thiết ta có: \(\left\{ {\begin{array}{*{20}{c}}{9a + 3b + c = 11}\\{25a + 5b + c = 3}\\{64a + 8b + c = 21}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 20}\\{c = 53}\end{array}} \right.\)
Do đó: \(v\left( t \right) = 2{t^2} - 20t + 53\,\,\left( {3 \le t \le 8} \right)\).
Quãng đường chất điểm đi được trong khoảng thời gian này là:
\[{S_3} = \int\limits_3^8 {v\left( t \right){\rm{d}}t} = \int\limits_3^8 {\left( {2{t^2} - 20t + 53} \right){\rm{d}}t = \,\,} \left( {\frac{{2{t^3}}}{3} - 10{t^2} + 53t} \right)\left| {\begin{array}{*{20}{c}}8\\3\end{array}} \right. = \frac{{115}}{3}\,\,\,\left( {\rm{m}} \right)\].
Vận tốc trung bình của chất điểm trong khoảng thời gian này là: \({v_{tb}} = \frac{{{S_3}}}{5} = \frac{{23}}{3} \approx 7,67\,\left( {{\rm{m/s}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Chất điểm chuyển động theo quy luật vận tốc \[v\left( t \right)\left( {{\rm{m/s}}} \right)\] có dạng đường thẳng khi \[0 \le t \le 3\left( {\rm{s}} \right)\] và \[8 \le t \le 15\left( {\rm{s}} \right)\] và \[v\left( t \rig (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/6-1759409201.png)



